• Title/Summary/Keyword: Joint moment & power

Search Result 50, Processing Time 0.022 seconds

Large Deformational Elasto-Plastic Analysis of Space Frames Considering Finite Rotations and Joint Connection Properties (유한회전과 접합부 특성을 고려한 공간프레임의 대변형 탄소성 해석)

  • Lee, Kyung Soo;Han, Sang Eul
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.6
    • /
    • pp.597-608
    • /
    • 2009
  • In this paper, large-deformation elasto-plastic analysis of space frames that considersjoint connection properties is presented. This method is based on the large-deformation formula with finite rotation, which was developed initially for elastic systems, and is extended herein to include the elasto-plastic effect and the member joint connection properties of semi-rigid what?. The analytical method was derived from the Eulerian concept, which takes into consideration the effects of large joint translations and rotations. The localmember force-deformation relationships were obtained from the beam-column approach, and the change caused by the axial strain in the member chord lengths and flexural bowing were taken into account. The effect of the axial force of the member on bending and torsional stiffness, and on the plastic moment capacity, is included in the analysis. The material is assumed to be ideally elasto-plastic, and yielding is considered concentrated at the member ends in the form of plastic hinges. The semi-rigid properties of the member joint connection are considered based on the power or linear model. The arc length method is usedto trace the post-buckling range of the elastic and elasto-plastic problems with the semi-rigid connection. A sample non-linear buckling analysis was carried out with the proposed space frame formulations to demonstrate the potential of the developed method in terms of its accuracy and efficiency.

Correlations of Fugl-Meyer Assessment Scale, Gait Speed, and Timed Up & Go Test in Patients With Stroke (뇌졸중 환자에서 Fugl-Meyer 평가척도와 보행속도, Timed Up & Go 검사와의 상관관계)

  • Lee, Young-Jung;Yi, Chung-Hwi;Kwon, Oh-Yun;Kim, Jong-Man
    • Physical Therapy Korea
    • /
    • v.11 no.1
    • /
    • pp.1-17
    • /
    • 2004
  • The purposes of this study were to find correlations among Fugl-Meyer Assessment scale, gait speed, and Timed Up & Go test (TUG) and to predict gait ability from subscales of Fugl-Meyer Assessment scale. The study population consisted of 30 stroke patients referred to the Department of Rehabilitation Medicine in the Bundang Jaesang General Hospital. All subjects were ambulatory with or without an assistive device. All participants were assessed on Fugl-Meyer Assessment scale and gait speed (m/s), TUG (s). The data were analyzed using independent t-test, Pearson product moment correlation analysis and stepwise multiple regression. The results revealed that all items of Fugl-Meyer Assessment scale, except passive joint range of motion were significantly correlated with gait speed and TUG. In particular, sensation score, lower extremity motor and coordination score have a significant correlation with gait speed and TUG (p<.05). The sensation score and lower extremity motor score were important factors in comfortable gait and maximal gait speed. Their power of explanation regarding comfortable gait and maximal gait speed were 63.0% and 65.0%, respectively. The sensation score and lower extremity coordination score were important factors in TUG. Their power of explanation regarding TUG was 55.0%. These results showed that Fugl-Meyer Assessment scale is significantly correlated with gait speed and TUG. Therefore Fugl-Meyer Assessment scale is an appropriate assessment tool to predict gait ability of patients with stroke. Further study about gait speed and TUG by change of Fugl-Meyer Assessment score is needed using a longitudinal study design.

  • PDF

Application of power spectral density function for damage diagnosis of bridge piers

  • Bayat, Mahmoud;Ahmadi, Hamid Reza;Mahdavi, Navideh
    • Structural Engineering and Mechanics
    • /
    • v.71 no.1
    • /
    • pp.57-63
    • /
    • 2019
  • During the last two decades, much joint research regarding vibration based methods has been done, leading to developing various algorithms and techniques. These algorithms and techniques can be divided into modal methods and signal methods. Although modal methods have been widely used for health monitoring and damage detection, signal methods due to higher efficiency have received considerable attention in various fields, including aerospace, mechanical and civil engineering. Signal-based methods are derived directly from the recorded responses through signal processing algorithms to detect damage. According to different signal processing techniques, signal-based methods can be divided into three categories including time domain methods, frequency domain methods, and time-frequency domain methods. The frequency domain methods are well-known and interest in using them has increased in recent years. To determine dynamic behaviours, to identify systems and to detect damages of bridges, different methods and algorithms have been proposed by researchers. In this study, a new algorithm to detect seismic damage in the bridge's piers is suggested. To evaluate the algorithm, an analytical model of a bridge with simple spans is used. Based on the algorithm, before and after damage, the bridge is excited by a sine force, and the piers' responses are measured. The dynamic specifications of the bridge are extracted by Power Spectral Density function. In addition, the Least Square Method is used to detect damage in the bridge's piers. The results indicate that the proposed algorithm can identify the seismic damage effectively. The algorithm is output-only method and measuring the excitation force is not needed. Moreover, the proposed approach does not need numerical models.

Relationship between Neurocognitive Ability and Risk Factors of Anterior Cruciate Ligament Injuries in Female Athletes (여성선수의 신경인지 능력과 전방십자인대 손상 위험요인과의 관계)

  • Ha, Sung-He;Park, Sang-Kyoon
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.8
    • /
    • pp.301-309
    • /
    • 2018
  • The aim of this study was to investigate the relationship between the neurocognitive ability and the risk factors of non-contact anterior cruciate ligament injuries during landing in female recreational athletes. Thirty-two female athletes participated in computerized neurocognition test and motion analysis for drop vertical jump. Pearson's linear correlation analysis was performed to analyze the relationship between the raw scores of neurocognition test and biomechanical variables including 3D joint angle, moment, power, vertical ground reaction force, loading rate, and support time. There were correlations between the scores of neurocognition test and biomechanical variables as high the neurocognition score, it also increase landing strategies were used to maintain posture of the lower extremity. Therefore, the neurocognitive test might be used as a good screening method to detect the risk factors before injury.

Comparison of Kinetic Variables and Muscle Activity of Ankle Joint During Walking in Subjects With and Without Diabetic Plantar Ulcers (보행 시 정상인과 당뇨병성 족부궤양 환자의 족관절 운동역학적 변수와 근활성도 비교)

  • Kwon, Oh-Yun;Choi, Kyu-Hwan
    • Physical Therapy Korea
    • /
    • v.8 no.4
    • /
    • pp.45-61
    • /
    • 2001
  • 본 연구는 보행주기 동안 정상인과 당뇨병성 족부궤양 환자의 족관절 운동역학적 변수와 족관절 근육들의 근활성도에 차이가 있는지 알아보기 위하여 실시하였다. 본 연구의 대상자는 당뇨병성 족부궤양이 있는 환자 9명(남자: 6명, 여자: 3명)과 성, 연령, 체중으로 짝짓기(matching)시킨 대조군 9명이었다. 3차원 동작분석기, 힘판, 표면 근전도를 이용하여, 보행주기 동안 족관절의 관절가동범위, 모멘트(moment), 일률(power), 그리고 내측가자미근, 전경골근, 비복근의 근수축 개시시간(onset time)과 종료시간(cessation time)을 측정하였다. 정상군과 비교하여 당뇨병성 족부궤양군의 보행속도는 느렸고, 입각기 기간이 길었으며, 족관절의 가동범위가 적었고, 족관절 최대 족저굴곡 모멘트와 일률이 정상군에서보다 유의하게 낮았다. 보행주기에서 당뇨병성 족부궤양군에서 내측 가자미근과 비복근의 근수축 개시시간은 유의하게 빨랐으며, 전경골근과 비복근의 근수축 종료시간은 유의하게 지연되었다. 당뇨병성 족부궤양 환자군의 족관절 근육에서 동시수축(co-contraction)이 증가되고, 보행속도가 느리며, 입각기 기간이 증가하였다. 이러한 보행특성의 차이는 족부 감각손실에 따른 보행의 안정성을 유지하기 위한 보행전략 때문으로 판단된다. 앞으로 이러한 비정상적인 보행특성이 당뇨병성 족부궤양에서 발생하는 비정상적인 족저부 압력분포과 족부궤양 발생과 어떤 관계가 있는지 알아보는 연구가 필요할 것이다.

  • PDF

The Effect of Badminton Shoe Forefoot Flexibility during the Under Clear Quick Lunge from a Jump Smashing (배드민턴화의 굴곡성(Flexibility) 차이가 점프 스매싱 후 언더클리어 동작시 하지에 미치는 영향)

  • Yi, Jae-Hoon;Sohn, Jee-Hoon;Ryue, Jae-Jin;Lee, Ki-Kwang;Lee, Jung-Ho
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.1
    • /
    • pp.105-111
    • /
    • 2012
  • The purpose of this study was to investigate the effect that difference in forefoot of shoe flexibility during the quick lunge from a jump smashing on the lower limbs and the plantar pressure distribution. For this 10 elite badminton players with over 10 years experience and right handed participated. Two kinds of badminton shoes were selected and tested mechanical testing for the forefoot flexibility. Motion analysis, ground reaction forces and plantar pressure distribution were recorded. It was required to conduct lunge movement after jumping smashing as possible as high. Photo sensor was located in 3 meter away from standing position and its height was 40 cm. Subjects were conducted to return original position after touching the sensor as under clear movement as possible as fast. Forefoot stiffness had an effect on shoe peak bending degree and peak bending angular velocity in propulsion phase. Forefoot flexibility had an effect on ankle plantar flexion and knee flexion moment. It appears that joint power on lower limb and peak plantar pressure were not influenced by the flexibility of shoes.

Biomechanical Research on Forward Gait with Backward Mechanism (후진 보법을 이용한 전방향 보행의 생체역학적 연구)

  • Hah, Chong-Ku;Jeong, Wang-Soo;Hong, Su-Yeon;Jang, Young-Kwan;Ki, Jae-Sug
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7285-7292
    • /
    • 2015
  • The purpose of this study was to investigate possibility of a forward gait with backward mechanism(dance gait) as rehabilitation and/or walking exercise by means of biomechanical variables. Thirteen professional women dancers(age, $21.1{\pm}1.3yrs$; height, $159.3{\pm}7.2cm$; body mass, $45.1{\pm}8.4kg$)participated in this study. We found that speed, stride length and double limb support time of a dance gait were more greater than backward gait, but stride width of dance gait less than a backward gait. Maximum RoMs, moments and powers of the lower limb joints on a dance gait were more frequent than a backward dance. These results were judged to be sufficient by the possibility of dance gait as rehabilitation and walking exercise.

Biomechanical Analysis of Key Motion on BoA's No. 1 in K-Pop Dance (보아의 K-Pop 넘버원 댄스 핵심동작의 생체역학적 분석)

  • Hah, Chong-Ku;Jang, Young-Kwan;Ki, Jae-Sug
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.970-977
    • /
    • 2015
  • The purpose of this study was to investigate biomechanical factors on key motions in K-Pop dance(BoA's No.1). A professional choreographer who was BoA's K-Pop No. 1 dance participated in this study. ROMs(range of motion) of shoulder and elbow joints in AP direction were greater than other joints. Those of trunk and pelvis in ML direction were the greatest of other directions. The velocity of CoG in SI direction was greater than other directions, and also max angular velocities of shoulder, elbow, knee, and hip joints in AP direction were the greatest of all directions. But ROM and angular velocity of ankle joint were very small. Max rotational powers of shoulder and knee joints were larger than other joints.

The Effect of High-Heeled Shoes With Total Contact Inserts in the Gait Characteristics of Young Female Adults During Lower Extremity Muscle Fatigue (하지 근육의 피로상태 동안 높은 굽 신발에 적용한 전면접촉인솔이 젊은 여성의 보행 특성에 미치는 영향)

  • Ko, Eun-Hye;Choi, Houng-Sik;Kim, Tack-Hoon;Cynn, Heon-Seock;Kwon, Oh-Yun;Choi, Kyu-Han
    • Physical Therapy Korea
    • /
    • v.15 no.1
    • /
    • pp.38-45
    • /
    • 2008
  • This study investigated gait characteristics, kinematics, and kinetics in the lower extremities between two different shoe conditions (high heeled shoes (7 cm), and high heeled shoes with a total contact insert (TCI)) after lower extremity muscle fatigue. Although TCI shave been applied in high heeled shoes to increase comfort and to decrease foot pressure, no study has attempted to identify the effects of TCI in fatigue conditions. The purpose of this study was to determine the effects of walking in high heeled shoes with TCI after lower extremity muscle fatigue was induced. This study was carried out in a motion analysis laboratory at Hanseo University. A volunteer sample of 14 healthy female subjects participated. All in fatigue conditions, the subjects were divided into two groups. The muscle fatigue was induced by 40 voluntary dorsi- and plantar-flexion exercises and 40 heel-rise exercises of the dominant foot. Surface electromyography was used to confirm the localized muscle fatigue using power spectral analysis of three muscles (tibialis anterior, gastrocnemius medialis and lateralis). The results were as follows: (1) In muscle fatigue conditions, the use of TCI decreased the peak flexion angle of the hip joint significantly in the early stance phase (p<.05) and increased the peak hip flexion moment in the terminal stance phase (p<.05). (2) In muscle fatigue conditions, the application of TCI also increased peak hip power generation in the early stance phase and peak hip power absorption in the terminal stance phase (p<.05). (3) In muscle fatigue conditions, the use of TCI reduced the impact force significantly and increased the secondary peak vertical GRF. These findings suggest that the TCI may provide beneficial effects when muscle fatigue occurs for a high heeled shoe gait. Future research employing the patient population and various types of TCI materials are required to clarify the effects of TCI.

  • PDF

Development of Elbow Wearable Robot for Elderly Workers (고령층 근로자들을 위한 팔꿈치 착용형 로봇의 개발)

  • Lee, Seok-Hoon;Lee, Si-Haeng;Kim, Jung-Yup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.6
    • /
    • pp.617-624
    • /
    • 2015
  • This paper describes the development of a wearable robot to assist the elbow muscle for use by elderly workers in aging societies. Various previously developed wearable robots have drawbacks in terms of their price, portability, and slow recognition of the wearer's intention. In this paper, emphasis is placed on the following features to minimize these drawbacks. The first feature is that an actuator is attached only at the elbow joint that withstands the highest moment during arm motion to reduce the weight, volume, and price of the robot and increase its practicality. The second is that operation of the wearable robot is divided into two modes, a tracking mode and a muscle strengthening mode, and the robot can automatically switch between these modes by analyzing the wearer's intention through the brachial muscle strength measuring device developed in this study. The assistive performance of the developed wearable robot is experimentally verified by motion tracking experiments without an external load and muscle strengthening experiments with an external load. During the muscle strengthening experiments, the power of the muscle of the upper arm is measured by a commercial electromyography (EMG) sensor. Motion tracking performance at a speed of $120^{\circ}/s$ and muscle assistance of over 60 % were obtained using our robot.