• 제목/요약/키워드: Joint kinematics

검색결과 428건 처리시간 0.032초

여유 자유도 로봇의 역기구학에 관한 연구 (An Inverse Kinematics of Redundant Manipulators)

  • 조동권;성영휘;정명진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 A
    • /
    • pp.399-402
    • /
    • 1993
  • In this paper, an inverse kinematics of redundant manipulators is proposed. Optimality-constraint based inverse kinematic algorithms have some problems because those algorithms are based on necessary conditions for optimality. Among the problems, switching from a maximum value to a minimum value may occur and make an inverse kinematic solution unstable while performing a given task. An inverse kinematic solution for protecting from the switchings is suggested. By sufficient conditions for optimality, the configuration space is defined as a set of regions, potentially good configuration region and potentially bad configuration region. Inverse kinematics solution within potentially good configuration region can provide joint trajectories without both singularities and switchings. Through a simulation of tracing a circle, we show the effectiveness of this inverse kinematics.

  • PDF

The Effect of Foot Landing Type on Lower-extremity Kinematics, Kinetics, and Energy Absorption during Single-leg Landing

  • Jeong, Jiyoung;Shin, Choongsoo S.
    • 한국운동역학회지
    • /
    • 제27권3호
    • /
    • pp.189-195
    • /
    • 2017
  • Objective: The aim of this study was to examine the effect of foot landing type (forefoot vs. rearfoot landing) on kinematics, kinetics, and energy absorption of hip, knee, and ankle joints. Method: Twenty-five healthy men performed single-leg landings with two different foot landing types: forefoot and rearfoot landing. A motion-capture system equipped with eight infrared cameras and a synchronized force plate embedded in the floor was used. Three-dimensional kinematic and kinetic parameters were compared using paired two-tailed Student's t-tests at a significance level of .05. Results: On initial contact, a greater knee flexion angle was shown during rearfoot landing (p < .001), but the lower knee flexion angle was found at peak vertical ground reaction force (GRF) (p < .001). On initial contact, ankles showed plantarflexion, inversion, and external rotation during forefoot landing, while dorsiflexion, eversion, and internal rotation were shown during rearfoot landing (p < .001, all). At peak vertical GRF, the knee extension moment and ankle plantarflexion moment were lower in rearfoot landing than in forefoot landing (p = .003 and p < .001, respectively). From initial contact to peak vertical GRF, the negative work of the hip, knee, and ankle joint was significantly reduced during rearfoot landing (p < .001, all). The contribution to the total work of the ankle joint was the greatest during forefoot landing, whereas the contribution to the total work of the hip joint was the greatest during rearfoot landing. Conclusion: These results suggest that the energy absorption strategy was changed during rearfoot landing compared with forefoot landing according to lower-extremity joint kinematics and kinetics.

사범계 체육전공 대학생 물구나무서기 동작의 운동학적 분석 (A Kinematics Analysis of Handstand of University Students Majoring in Physical Education)

  • 김윤지;소재무;여홍철
    • 한국운동역학회지
    • /
    • 제16권4호
    • /
    • pp.21-30
    • /
    • 2006
  • The purpose of the study is to search for the possibility of the application of kinematics analysis to physical education at schools and expand its scope of application. This study chose 9 college students majoring in physical education and classified them into type A group who can make the straight, vertical handstand, type B group whose waist is bent, type C group who cannot handstand completely. The center of mass, distance between hand and leg, and the angle and angular velocity of each joint were obtained. The result of this study is this. 1. The time for CM showed 6:4 for A group and 5:5 for B and C groups. The distance between hand and foot in the event 3 was 44% of the height for A group, and 41% for B and C groups. A Group showed the higher CM positional significant difference, it was vertically direction below the hip joint at front. For significant difference of the B Group showed horizontal and vertical velocity of the CM, the highest vertical was obtained in phase 3. The difference of angle of shoulder join in the flexion/extension was showed gradually extension event 2 and the height angular velocity was at phase 3 in the A group. 2 The analysis of the handstand motion revealed that the phase 3, but the maintenance of posture start part the handstand is also very important. Through these results, this study confirmed that the time for phase of the CM, horizontal and vertical positions, velocity, the distance between hands and foot, and the difference of the angle and angular velocity of hip joint and shoulder joint can be set as the variables of analysis. It was also definite cause that the handstand motions of college students majoring in physical education had many difference in performance.

Dexterity modulation of parallel manipulators using joint freezing/releasing and joint unactuation/actuation

  • Youm, Sungkwan;So, Jinho;Kim, Sungbok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.764-767
    • /
    • 1997
  • This paper presents the modulation of the dexterity of a parallel manipulator using joint freezing/releasing and joint unactuation/actuation. In this paper, individual limbs have redundant number of joints, and each joint can be frozen/released and unactuated/actuated, as needed. First, given a task, the restrictions on joint freezing and joint unactuation of a parallel manipulator are derived. Next, with/without joint freezing and/or joint unactuation, the kinematics of a parallel manipulator is formulated, based on which the manipulability ellipsoid is defined. The effects of joint freezing and joint unactuation on the manipulability are analyzed and compared. Finally, simulation results for a planar parallel manipulator are given. Joint mechanisms, such as joint freezing and joint unactuation, are rather simple to adopt into a parallel manipulator, but is quite effective to improve the task adaptability of the system.

  • PDF

Adaptation of Motion Capture Data of Human Arms to a Humanoid Robot Using Optimization

  • Kim, Chang-Hwan;Kim, Do-Ik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2126-2131
    • /
    • 2005
  • Interactions of a humanoid with a human are important, when the humanoid is requested to provide people with human-friendly services in unknown or uncertain environment. Such interactions may require more complicated and human-like behaviors from the humanoid. In this work the arm motions of a human are discussed as the early stage of human motion imitation by a humanoid. A motion capture system is used to obtain human-friendly arm motions as references. However the captured motions may not be applied directly to the humanoid, since the differences in geometric or dynamics aspects as length, mass, degrees of freedom, and kinematics and dynamics capabilities exist between the humanoid and the human. To overcome this difficulty a method to adapt captured motions to a humanoid is developed. The geometric difference in the arm length is resolved by scaling the arm length of the humanoid with a constant. Using the scaled geometry of the humanoid the imitation of actor's arm motions is achieved by solving an inverse kinematics problem formulated using optimization. The errors between the captured trajectories of actor arms and the approximated trajectories of humanoid arms are minimized. Such dynamics capabilities of the joint motors as limits of joint position, velocity and acceleration are also imposed on the optimization problem. Two motions of one hand waiving and performing a statement in sign language are imitated by a humanoid through dynamics simulation.

  • PDF

In vivo 3-dimensional Kinematics of Cubitus Valgus after Non-united Lateral Humeral Condyle Fracture

  • Kim, Eugene;Park, Se-Jin;Lee, Ho-Seok;Park, Jai-Hyung;Park, Jong Kuen;Ha, Sang Hoon;Murase, Tsuyoshi;Sugamoto, Kazuomi
    • Clinics in Shoulder and Elbow
    • /
    • 제21권3호
    • /
    • pp.151-157
    • /
    • 2018
  • Background: Nonunion of lateral humeral condyle fracture causes cubitus valgus deformity. Although corrective osteotomy or osteosynthesis can be considered, there are controversies regarding its treatment. To evaluate elbow joint biomechanics in non-united lateral humeral condyle fractures, we analyzed the motion of elbow joint and pseudo-joint via in vivo three-dimensional (3D) kinematics, using 3D images obtained by computed tomography (CT) scan. Methods: Eight non-united lateral humeral condyle fractures with cubitus valgus and 8 normal elbows were evaluated in this study. CT scan was performed at 3 different elbow positions (full flexion, $90^{\circ}$ flexion and full extension). With bone surface model, 3D elbow motion was reconstructed. We calculated the axis of rotation in both the normal and non-united joints, as well as the rotational movement of the ulno-humeral joint and pseudo-joint of non-united lateral condyle in 3D space from full extension to full flexion. Results: Ulno-humeral joint moved to the varus on the coronal plane during flexion, $25.45^{\circ}$ in the non-united cubitus valgus group and $-2.03^{\circ}$ in normal group, with statistically significant difference. Moreover, it moved to rotate externally on the axial plane $-26.75^{\circ}$ in the non-united cubitus valgus group and $-3.09^{\circ}$ in the normal group, with statistical significance. Movement of the pseudo-joint of fragment of lateral condyle showed irregular pattern. Conclusions: The non-united cubitus valgus group moved to the varus with external rotation during elbow flexion. The pseudo-joint showed a diverse and irregular motion. In vivo 3D motion analysis for the non-united cubitus valgus could be helpful to evaluate its kinematics.

운동방정식을 기저로 한 스튜워트 플랫폼 운동장치의 제어시스템 설계 및 슬라이딩 모드제어 (Model-Based Control System Design and Sliding Mode Control of Stewart Platform Manipulator)

  • 이종원;김낙인
    • 대한기계학회논문집A
    • /
    • 제23권6호
    • /
    • pp.903-911
    • /
    • 1999
  • A high speed tracking control system for 6-6 Stewart platform manipulator is designed for performing the model based joint-axis sliding mode control. Because of the complex dynamics and kinematics of the Stewart platform manipulator, two computer systems, consisting of a PC and a DSP, are adopted, so that real time tasks are run in synchronous and asynchronous modes. It is experimentally proven that the proposed control system makes the convenience in implementation of model based tracking control, so that it can achieve effective tracking control under relatively high speed and additional payload conditions.

범용 로봇팔과 모듈러 햅틱 컨트롤러를 사용한 수술 로봇 시스템 개발 (Development of a Robotic Surgery System using General Purpose Robotic Arm and Modular Haptic Controller)

  • 이재봉;진상록;이승준
    • 로봇학회논문지
    • /
    • 제15권2호
    • /
    • pp.131-138
    • /
    • 2020
  • This paper proposes a low-cost robotic surgery system composed of a general purpose robotic arm, an interface for daVinci surgical robot tools and a modular haptic controller utilizing smart actuators. The 7 degree of freedom (DOF) haptic controller is suspended in the air using the gravity compensation, and the 3D position and orientation of the controller endpoint is calculated from the joint readings and the forward kinematics of the haptic controller. Then the joint angles for a general purpose robotic arm is calculated using the analytic inverse kinematics so that that the tooltip reaches the target position through a small incision. Finally, the surgical tool wrist joints angles are calculated to make the tooltip correctly face the desired orientation. The suggested system is implemented and validated using the physical UR5e robotic arm.

Walk Simulations of a Biped Robot

  • Lim, S.;Kim, K.I.;Son, Y.I.;Kang, H.I.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2132-2137
    • /
    • 2005
  • This paper is concerned with computer simulations of a biped robot walking in dynamic gaits. To this end, a three-dimensional robot is considered possessing a torso and two identical legs of a kinematically ingenious design. Specific walking patterns are off-line generated meeting stability based on the ZMP condition. Subsequently, to verify whether the robot can walk as planned, a multi-body dynamics CAE code has been applied to the corresponding joint motions determined by inverse kinematics. In this manner, complex mass effects could be accurately evaluated for the robot model. As a result, key parameters to successful gaits are identified including inherent characteristics as well. Also, joint actuator capacities are found required to carry out those gaits.

  • PDF

관절의 한계 각도를 고려한 인체모델의 Workspace 생성 알고리즘 (An Algorithm for Workspace of Human Model using the joint limit angle)

  • 윤석현
    • 한국컴퓨터정보학회논문지
    • /
    • 제10권5호
    • /
    • pp.171-177
    • /
    • 2005
  • 본 논문에서는 Forward Kinematics의 개념을 이용하여 각도변화에 따른 좌표계산 방법을 설명하고, Workspace 생성을 위한 반복적 방정식 (Recursive Equation)을 동차좌표계를 이용하여 수식으로 표현한다. 그리고 이 반복적 방정식(Recursive Equation)과 인체모델 관절의 한계 각도를 접목시켜 인체모델의 Workspace생성을 위한 알고리즘을 제시하고, 제시한 알고리즘을 이용하여 인체모델의 Workspace 생성결과를 그래픽으로 표현하였으며 알고리즘의 적절성을 보였다.

  • PDF