• 제목/요약/키워드: Joint geometry

검색결과 179건 처리시간 0.023초

비드 높이 및 조인트 추적의 실시간 제어 연구 (A Study on Real-time Control of Bead Height and Joint Tracking)

  • 이정익;고병갑
    • 한국공작기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.71-78
    • /
    • 2007
  • There have been continuous efforts to automate welding processes. This automation process could be said to fall into two categories, weld seam tracking and weld quality evaluation. Recently, the attempts to achieve these two functions simultaneously are on the increase. For the study presented in this paper, a vision sensor is made, and using this, the 3 dimensional geometry of the bead is measured in real time. For the application in welding, which is the characteristic of nonlinear process, a fuzzy controller is designed. And with this, an adaptive control system is proposed which acquires the bead height and the coordinates of the point on the bead along the horizontal fillet joint, performs seam tracking with those data, and also at the same time, controls the bead geometry to a uniform shape. A communication system, which enables the communication with the industrial robot, is designed to control the bead geometry and to track the weld seam. Experiments are made with varied offset angles from the pre-taught weld path, and they showed the adaptive system works favorable results.

피로실험에 의한 콘크리트 포장체 경사가로줄눈부의 하중전달율에 관한 연구 (A Study on Load Transfer Efficiency of Skewed Transverse Joint of Concrete Pavement by the Fatigue Test)

  • 황승의;배주성
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제5권3호
    • /
    • pp.203-211
    • /
    • 2001
  • This paper presents load transfer efficiency of skewed transverse joint of jointed concrete pavement with the fatigue model test. A 1/12 scale model was used to satisfy the geometry, loading, material similitude, which are variables to the skew angel of transverse joint. As the test results by fatigue load 700kgf applied, the deflection and stress of transverse joint were decreased as to increasing of skew angle of transverse joint. In addition, load transfer efficiency of transverse joint with skew angle is better than the load transfer efficiency of transverse joint without skew angle.

  • PDF

Stress concentration factors in tubular T-joints stiffened with external ring under axial load

  • Hossein Nassiraei;Pooya Rezadoost
    • Ocean Systems Engineering
    • /
    • 제13권1호
    • /
    • pp.43-55
    • /
    • 2023
  • In this study, the SCFs in tubular T-joints stiffened with external ring under axial load are studied and discussed. After verification of the present numerical model with the results of several available experimental tests, 156 FE models were generated and analyzed to parametrically evaluate the effect of the joint geometry and the ring geometry on the SCFs. Results indicated that the SCF of the stiffened T-joints at crown point can be down to 24% of the SCF of the corresponding un-reinforced joint at the same point. Also, the effect of the ring on the SCF at saddle point is more remarkable than the effect of the ring on the SCF at crown point. Moreover, against un-reinforced joints under axial load, the SCF at saddle point of the stiffened joint is smaller than the SCF at crown point of that stiffened joint. The ring results in the redistribution of stresses in the ring and metal substrate. Also, the effect of the ring thickness on the decrease of the SCFs is slight and can be ignored. In final step, the geometric parameters affecting the SCFs of the stiffened T-joints are analyzed by multiple nonlinear regression analyses. An accurate formula is proposed for determining the SCFs.

GMT 평판의 볼트조인트 강도 평가 (Estimation of Bolted Joint Strength of Flat Plate of Glass-Mat Reinforced Thermoplastics)

  • 강완석;민지현;이재욱;임용택
    • 대한기계학회논문집A
    • /
    • 제27권10호
    • /
    • pp.1636-1643
    • /
    • 2003
  • In this study, bolted joint made of Glass-Mat Reinforced Thermoplastics (GMT) specimen was under tensile loading to investigate the relation between joint strength and glass-fiber weight fraction of the flat plate specimen. The effect of molding conditions such as the initial size of a GMT charge and molding temperatures was investigated under plane strain condition. In consideration of the specimen geometry, minimum end distance and width of the specimen to induce the bearing fracture mode of the bolted joint were determined. And finally, the effect of the outer diameter of washer and clamping pressure on joint strength was also investigated. Since joint strength is dependent on the local glass-fiber weight fraction, experimentally measured strength was modified, considering its irregular values of the specimen molded under various processing conditions in order to obtain a reasonable correlation between the two.

십자형(十字形) 필렛 용접(熔接) 이음의 형상변화(形狀變化)에 따른 소성적(塑性的) 거동(擧動)에 대한 연구(硏究) (A Study on Plastic Behaviour of Cruciform Welding Joint with Variation of Contour)

  • 엄동석;강병윤
    • 대한조선학회지
    • /
    • 제18권4호
    • /
    • pp.21-29
    • /
    • 1981
  • In this paper, plastic behavior and plastic strength of cruciform fillet welded joint under tension is investigated by finite element method. Attension is focussed, in particular, on the effect of geometry of fillet weld including its contour, size and penetration. And the approximate analysis of welded joint have been carried out from a simple model constructed by three zone, ie, base metal, heat affected zone, and weld metal.

  • PDF

슬관절의 운동학적 분석 (Arthrokinetic Analysis of Knee Joint)

  • 김재헌
    • PNF and Movement
    • /
    • 제6권1호
    • /
    • pp.53-60
    • /
    • 2008
  • Purpose : To describes the important aspects of knee joint movement and function used when applying PNF technique to the lower limb. Method : The knee was a very important roles in the lower limb movement and ambulation. This study summarizes the physiologic movement of knee to the PNF lower extremity patterns. Result : The tibiofemoral joint is usually described as a modified hinge joint with flexion-extension and axial rotation by two degrees of freedom movement. These arthrokinematics are a result of the geometry of the joints and the tension produced in the ligamentous structures. The patellofemoral joint is a sellar joint between the patella and the femur. Stability of the patellofemoral joint is dependent on the passive and dynamic restraints around the knee. In a normal knee the ligaments are inelastic and maintain a constant length as the knee flexes and extends, helping to control rolling, gliding and translation of the joint motions. Conclusions : It is important to remember that small alterations in joint alignment can result in significant alterations in patellofemoral joint stresses and that changes in the mechanics of the patellofemoral joint can also result in changes in the tibiofemoral compartments. Successful treatment requires the physical therapist to understand and apply these arthrokinematic concepts. When applied to PNF low extremity patterns, understanding of these mechanical concepts can maximize patient function while minimizing the risk for further symptoms or injury.

  • PDF

다양한 관절 구성을 위한 모듈라 매니퓰레이터의 관절 및 링크 모듈 형상 도출 (Joint and Link Module Geometric Shapes of Modular Manipulator for Various Joint Configurations)

  • 홍성훈;이우섭;이형철;강성철
    • 로봇학회논문지
    • /
    • 제11권3호
    • /
    • pp.163-171
    • /
    • 2016
  • A modular manipulator in serial-chain structure usually consists of a series of modularized revolute joint and link modules. The geometric shapes of these modules affect the number of possible configurations of modular manipulator after assembly. Therefore, it is important to design the geometry of the joint and link modules that allow various configurations of the manipulators with minimal set of modules. In this paper, a new 1-DoF(degree of freedom) joint module and simple link modules are designed based on a methodology of joint configurations using a series of Rotational(type-R) and Twist(type-T) joints. Two of the joint modules can be directly connected so that two types of 2-DoFs joints could be assembled without a link module between them. The proposed geometries of joint and link modules expand the possible configurations of assembled modular manipulators compared to existing ones. Modular manipulator system of this research can be a cornerstone of user-centered markets with various solution but low-cost, compared to conventional manipulators of fixed-configurations determined by the provider.

Traffic-Aware Relay Sleep Control for Joint Macro-Relay Network Energy Efficiency

  • Deng, Na;Zhao, Ming;Zhu, Jinkang;Zhou, Wuyang
    • Journal of Communications and Networks
    • /
    • 제17권1호
    • /
    • pp.47-57
    • /
    • 2015
  • With the ever growing demand of data applications, the joint macro-relay networks are emerging as a promising heterogeneous deployment to provide coverage extension and throughput enhancement. However, the current cellular networks are usually designed to be performance-oriented without enough considerations on the traffic variation, causing substantial energy waste. In this paper, we consider a joint macro-relay network with densely deployed relay stations (RSs), where the traffic load varies in both time and spatial domains. An energy-efficient scheme is proposed to dynamically adjust the RS working modes (active or sleeping) according to the traffic variations, which is called traffic-aware relay sleep control (TRSC). To evaluate the performance of TRSC,we establish an analytical model using stochastic geometry theory and derive explicit expressions of coverage probability, mean achievable rate and network energy efficiency (NEE). Simulation results demonstrate that the derived analytic results are reasonable and the proposed TRSC can significantly improve the NEE when the network traffic varies dynamically.

Fatigue Strength and Root-Deck Crack Propagation for U-Rib to Deck Welded Joint in Steel Box Girder

  • Zhiyuan, YuanZhou;Bohai, Ji;Di, Li;Zhongqiu, Fu
    • 국제강구조저널
    • /
    • 제18권5호
    • /
    • pp.1589-1597
    • /
    • 2018
  • Fatigue tests and numerical analysis were carried out to evaluate the fatigue performance at the U-rib to deck welded joint in steel box girder. Twenty specimens were tested corresponding to different penetration rates (80 and 100%) under fatigue bending load, and the fatigue strength was investigated based on hot spot stress (HSS) method. The detailed stress distribution at U-rib to deck welded joint was analyzed by the finite element method, as well as the stress intensity factor of weld root. The test results show that the specimens with fully penetration rate have longer crack propagation life due to the welding geometry, resulting in higher fatigue failure strength. The classification of FAT-90 is reasonable for evaluating fatigue strength by HSS method. The penetration rate has effect on crack propagation angle near the surface, and the 1-mm stress below weld toe and root approves to be more suitable for fatigue stress assessment, because of its high sensitivity to weld geometry than HSS.