• Title/Summary/Keyword: Joint contact force

Search Result 132, Processing Time 0.024 seconds

A Study on the Development of the Gear Profile Design Program (기어 치형 설계 프로그램 개발에 관한 연구)

  • Jung, Sung-Pil;Park, Tae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.8
    • /
    • pp.104-111
    • /
    • 2009
  • In this paper, the gear design program is presented. The profile of gears is created using classical mathematic formulations. In each gear, a kinematic joint is applied and one can define the 20 contact condition between gear pairs. Initial and boundary conditions such as force, torque, velocity, acceleration, etc. can be set. Thus, it is possible to analyze dynamic characteristics of gear pairs such as reaction moment and the variation of angular velocity. In order to find the optimal profile of gear pairs, two optimization methods based on design of experiments are inserted in the program; One is the Taguchi method and the other is the response surface analysis method. To verify the program, the rack & pinion gear is created and analyzed. Simulation results show that the developed program is useful and result data is reliable.

Measurement of Biomechanical Property of Chondrocyte (연골세포의 기계적 물성치 측정)

  • ;Daehwan Shin
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.154-157
    • /
    • 2002
  • A cyto-indentation technique was used to obtain the biomechanical compressive compliance property of an chondrocyte cell attached to glass surface, which was tried to generate joint cartilage by tissue engineering. Piezo-transducer system and dual photo-diode system were used to conduct mechanical indentation through displacement-controlled testing and the measurement of corresponding cell reaction force. The Poisson's ratio of 0.37 was quoted from other report. The compressive compliance of chondrocyte, that was determined by elastic contact theory, was 1.38${\pm}$0.057 kPa. This value is 30% higher than that of MG63 osteoblast-like cell. The cyto-indentation technique employed in this study is so precise that it can quantify the biomechanical property of single cell.

  • PDF

Research of Controlled Motion of Dual Fingers with Soft-Tips Grasping (Soft-Tip을 가진 Dual Finger의 파지운동제어에 관한 연구)

  • 박경택;양순용;한현용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.670-673
    • /
    • 2000
  • This paper attempt analysis and computer simulation of dynamics of a set of dual multi-joint fingers with soft-deformable tips which are grasping. Firstly, a set of differential equation describing dynamics of the fingers and object together with geometric constraint of tight area-contacts is formulated by Euler-Lagrange's formalism. Secondly, problems of controlling both the internal force and the rotation angle of the grasped object under the constraints of area-contacts of tight area-contacts are discussed. The effect of geometric constraints of area-contacts on motion of the overall system is analyzed and a method of computer simulation for overall system of differential-algebraic equations is presented. Finally, simulation results are shown and the effects of geometric constraints of area-contact is discussed.

  • PDF

Biomechanical Analysis of Lower Limbs on Speed of Nordic Walking (노르딕워킹의 속도에 따른 하지 관절의 운동역학적인 분석)

  • Yang, Dae-Jung;Lee, Yong-Seon;Park, Seung-Kyu;Kang, Jeong-Il;Lee, Joon-Hee;Kang, Yang-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.3
    • /
    • pp.383-390
    • /
    • 2011
  • In this study, 26 normal subjects were studied to compare the biomechanical Analysis of Lower Limbs on Speed of Nordic Walking. The biomechanical variables were determined by performing three-dimensional gait analysis, and the measurements items were spatial and temporal parameters; vertical ground reaction force; and moments of the hip, knee, and ankle joints. The purpose of this study based on the speed of Nordic Walking to the vertical ground reaction force and joint moments of each were analyzed. Nordic Walking with poles while being whether this weight is reduced to load, not the improvement of muscle activity by identify Nordic walking is to allow efficient. The results of the analysis were follows. The spatial parameters of step length, stride length significantly increased with increase in velocity(p<0.001). The temporal parameters of step time, stride time, the duration of double support use, and the duration of single support use also significantly decreased with increase in velocity(p<0.001), but cadence significantly increased(p<0.01). Analysis of the changes in ground reaction force revealed that vertical ground reaction force significantly increased at the initial contact and the terminal stance and decreased at the mid stance with increase in velocity(p<0.001). Moments of the hip and knee joints significantly in creased with increase in velocity whereas that of the ankle joint did not. Gait analysis revealed that weight-bearing decreased and moments of the hip and knee joints increased with increase in velocity(p<0.01). The results of this study may help people perform Nordic walking efficiently and Nordic walking can be used in the gait training of people with an abnormal gait.

Evaluation of the Pull-out Resistance of the SMA Wire Connector (SMA 와이어를 이용한 연결재의 인발저항성능 평가)

  • Jung, Chi-Young;Woo, Tae-Ryeon;Lee, Jong-Han;Cheung, Jin-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.130-137
    • /
    • 2019
  • Precast concrete (PC) structure is one of the type of the structures which is made in a facility prior to installing it to a construction field. The contact surfaces between two PC structures should be treated for obtaining enough binding force by inducing prestressing force. However, in the many cases, the contact surface causes the crack and leakage of water. These cracks and water leakage can cause the corrosion of the rebar, and the corrosion of the rebar can severely reduce the long-term durability. In this study, the SMA wire connector is suggested to solve the problem with the contact surfaces between two PC structures. The pull-out resistance of the suggested SMA wire connector is evaluated by conducting the tests to find the effect of the number of wires, shape of connector part, and shape memory effect. As a result of this study, the empirical formula is suggested to estimate the pull-out resistance related with the effects of the shape of the connector, shape memory effect, and the adhesive force. The validity between the estimated pull-out resistance and the measured value is confirmed.

TENSILE STRENGTH OF LASER WELDED-TITANIUM AND GOLD ALLOYS (티타늄과 금합금의 레이저 용접부의 인장강도)

  • Song, Yun-Gwan;Ha, Il-Soo;Song, Kwang-Yeob
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.2
    • /
    • pp.200-213
    • /
    • 2000
  • Lasers have given dentistry a new rapid, economic, and accurate technique for metal joining. Although laser welding has been recommended as an accurate technique, there are some limitations with this technique. For example, the two joining surfaces must have a tight-fitting contact, which may be difficult to achieve in some situations. The tensile samples used for this study were made from a custom-made pure titanium and type III gold alloy plates. 27 of 33 specimens were sectioned perpendicular to their long axis with a carborundum disk and water coolant. Six specimens remained and served as the control group. A group of 6 specimens was posed as butt joints in custom parallel positioning device with a feeler gauge at each of three gaps : 0.00, 0.25. and 0.50mm. All specimens were then machined to produce a uniform cross-sectional dimension, none of the specimens was subjected to any subsequent form of heat treatment. Scanning electron microscopy was performed on representative tested specimens at fractured surfaces in both the parent metal and the weld. Vickers hardness was measured at the center of the welds with a micropenetrometer using a force of 300gm for 15 seconds. Measurement was made at approximately $200{\mu}m\;and\;500{\mu}m$ deep from each surface. One-way analysis of variance (ANOVA) and Scheffe's test was calculated to detect differences between groups. The purpose of this study is to compare the strength and properties of the joint achieved at various butt Joint gaps by the laser welding of type III gold alloy and pure titanium tensile specimens in an argon atmosphere. The results of this study were as follows : 1. When indexing and welding pure titanium, there was no decrease in ultimate tensile strength as compared with the unsectioned alloys for indexing gaps of 0.00 to 0.50mm, although with increasing gap size may come increased distortion (p>0.05). 2. When indexing and welding type III gold alloy, there were significant differences in ultimate tensile strength among groups with weld gaps of 0.00mm, 0.25 and 0.50mm, and the control group. Group with butt contact without weld gap demonstrated a significant higher ultimate tensile strength than groups with weld gaps of 0.25 and 0.50mm (p<0.05). 3. When indexing and welding the different metal combination of type III gold alloy and pure titanium, there were significant differences in ultimate tensile strength between groups with weld gaps of 0.00, 0.25, and 0.50mm. However, the mechanical properties of the welded joint would become too brittle to be acceptable clinically (p<0.05). 4. The presence of large pores in the laser welded joint appears to be the most important factor in controlling the tensile strength of the weld in both pure titanium and type III gold alloy.

  • PDF

Controlling the surface energy and electrical properties of carbon films deposited using unbalanced facing target magnetron sputtering plasmas

  • Javid, Amjed;Kumar, Manish;Yoon, Seok Young;Lee, Jung Heon;Han, Jeon Geon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.231.1-231.1
    • /
    • 2015
  • Surface energy, being an important material parameter to control its interactions with the other surfaces plays a key role in bio-related application. Carbon films are found very promising due to their characteristics such as wear and corrosion resistant, high hardness, inert, low resistivity and biocompatibility. The present work deals with the deposition of carbon films using unbalanced facing target magnetron sputtering technique. The discharge characteristics were studied using optical emission spectroscopy and correlated with the film properties. Surface energy was investigated through contact angle measurement. The ID/IG ratio as calculated from Raman spectroscopy data increases with the increase in power density due to the higher number of sp2 clusters embedded in the amorphous matrix. The deposited films were smooth and homogeneous as observed by Atomic force microscopy having RMS roughness in the range of 1.74 to 2.25 nm. It is observed that electrical resistivity and surface energy varies in direct proportionality with operating pressure and has inverse relation with power density. The surface energy results clearly exhibited that these films can have promising applications in cell cultivation.

  • PDF

Joint Property of Sn-Cu-Cr(Ca) Middle Temperature Solder for Automotive Electronic Module (자동차 전장모듈용 Sn-Cu-Cr(Ca) 중온 솔더의 접합특성 연구)

  • Bang, Junghwan;Yu, Dong-Yurl;Ko, Yong-Ho;Kim, Jeonghan;Lee, Chang-Woo
    • Journal of Welding and Joining
    • /
    • v.31 no.5
    • /
    • pp.54-58
    • /
    • 2013
  • Joint properties of vehicle ECU (Electric Control Unit) module which was manufactured by using Sn-Cu-Cr-Ca alloy were investigated. A new solder which has a middle melting temperature about $231^{\circ}C$ was fabricated as the type of 300um solder ball and paste type. The prototype modules were made by reflow process and measured spreadability, wettability shear strength and estimated interface reaction. The spreadability of the alloy was about 84% from the measurement of contact angle of the solder ball and the wetting force was measured 2mN. The average shear strength of the module which was manufactured by using the solder paste, was 1.9 $kg/mm^2$. Also, the thickness of IMC(intermetallic compound) was evaluated with various aging temperature and time in order to understand Cr effect on Sn-0.7Cu solder. $Cu_6Sn_5$ IMC was formed between Cu pad and the solder alloy and the average thickness of the $Cu_6Sn_5$ IMC was measured about 4um and it was about 50% of thickness of $Cu_6Sn_5$ IMC in Sn-0.7Cu. It is expected to have a positive effect on reliability of the solder joint.

Flip Chip Process by Using the Cu-Sn-Cu Sandwich Joint Structure of the Cu Pillar Bumps (Cu pillar 범프의 Cu-Sn-Cu 샌드위치 접속구조를 이용한 플립칩 공정)

  • Choi, Jung-Yeol;Oh, Tae-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.4
    • /
    • pp.9-15
    • /
    • 2009
  • Compared to the flip-chip process using solder bumps, Cu pillar bump technology can accomplish much finer pitch without compromising stand-off height. Flip-chip process with Cu pillar bumps can also be utilized in radio-frequency packages where large gap between a chip and a substrate as well as fine pitch interconnection is required. In this study, Cu pillars with and without Sn caps were electrodeposited and flip-chip-bonded together to form the Cu-Sn-Cu sandwiched joints. Contact resistances and die shear forces of the Cu-Sn-Cu sandwiched joints were evaluated with variation of the height of the Sn cap electrodeposited on the Cu pillar bump. The Cu-Sn-Cu sandwiched joints, formed with Cu pillar bumps of $25-{\mu}m$ diameter and $20-{\mu}m$ height, exhibited the gap distance of $44{\mu}m$ between the chip and the substrate and the average contact resistance of $14\;m{\Omega}$/bump without depending on the Sn cap height between 10 to $25\;{\mu}m$.

  • PDF

Experimental Study on the Slip Coefficient with Member Type and Dimensions of High Tension Bolt Hole (부재 및 고장력볼트 구멍치수에 따른 미끄러짐계수의 실험적 연구)

  • Yang, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.4277-4283
    • /
    • 2012
  • Slip coefficient, whose value is dependent on the condition of contact surface at the friction joint of high tension bolt, is determined by slip load. Because contact area affects slip load, contact area that varies with bolt hole size is also related to the slip coefficient. In this study, we manufactured 32 specimens and performed bending and tension tests in order to examine changes in slip coefficient and load with material type, bolt diameter, and size of bolt hole. Slip load of specimens with oversize bolt hole had strength that was more than 80% higher than the slip load of specimens with standard bolt hole, and it also exceeded the design slip strength. In addition, we observed significant correlation between net-section ratio and slip ratio of specimens with oversize and standard bolt hole. However, some differences between the specimens are thought to have been caused by reduction in initial axial force of high tension bolt, which is an important parameter of slip coefficient. It is self-evident that increased bolt hole size would lead to decrease in design strength as it reduces both slip coefficient and bolt axial force. Nevertheless, we suggest that some flexibility in regulation of bolt hole, as long as it does not threaten the structural stability, may be a positive factor in terms of workability and efficiency.