• Title/Summary/Keyword: Joint angles

Search Result 517, Processing Time 0.038 seconds

The Effect of Ankle Joint Taping Applied to Patients with Hemiplegia on Their Gait Velocity and Joint Angles (편마비 환자의 발목관절에 테이핑 적용이 보행속도와 관절각도에 미치는 영향)

  • Lee, Min-Seok;Lee, Joon-Hee;Park, Seung-Kyu;Kang, Jeong-Il
    • The Journal of Korean Physical Therapy
    • /
    • v.24 no.2
    • /
    • pp.157-162
    • /
    • 2012
  • Purpose: This study is to identify the effect of Ankle Joint Taping applied to patients with chronic hemiplegia on their gait velocity and joint angles. Methods: We randomly extracted a clinical sample from 30 patients with hemiplegia resulting from stroke and classified them into two groups of a control group including 15 patients offered a regular therapeutic exercise and a test group including 15 patients offered taping. We also conducted the comparative analysis and pretest of the affected ankle joint angles by the normal characteristics of all subjects, Time to up and go test (TUG), 3D movement analyzer before the intervention. We applied taping to a test group for eight hours a day, five days a week during two weeks and conducted the comparative analysis of the gait velocity and the affected ankle joint angles by a comparison between and within two groups of before and after the intervention by conducting a posttest after the intervention. The result is as followings. Results: It indicated that there was a significantly decreased time with the increased gait velocity that a test according to a result of comparing the gait velocity within two groups (p<0.05). It indicated that there was a significantly increased angle in a comparison within two groups of test that inversion angle of a control group according to a result of comparing the ankle joint angles by 3D movement analyzer within groups (p<0.05). Conclusion: We found that TUG will help patients walk independently because it met a test group's need in the change of the gait velocity between two groups by recording less than 14 seconds which is the standard of using assistive aids and also found that ankle joint taping will help the joints prevent their function change considering that a control group showed an increased inversion angle in the change of the ankle joint within two groups.

An analysis Inverse Kinematics for Real Time Operation of Industrial Robot (산업용 로봇의 실시간 운용을 위한 역기구학 해석)

  • 이용중
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.1
    • /
    • pp.104-111
    • /
    • 1998
  • This study solves the inverse kinematics problem of industrial FANUC robot. Because every joint angle of FANUC robot is dependent on the position of end-effector and the direction of approach vector, arm metrix T6 is very complicated and each joint angle is a function of other joint angles. Therefore, the inverse kinematics problem can not be solved by conventional methods. Noticing the fact that if one joint angle is known, the other joint angles are calculated by the algebraic methods. $ heta$1 is calculated using neumerical analysis method, and solves inverse kinematics problem. This proposed method, in this study, is more simpler and faster than conventional methods and is very useful in the real-time control of the manipulator.

  • PDF

Correlation analysis of finger movements in dynamic hand grasping (잡기 동작에서 손가락 동작의 상관관계 분석)

  • Ryu, Tae-Beom;Yun, Myeong-Hwan
    • Journal of the Ergonomics Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.11-25
    • /
    • 2001
  • AS human movements have the inherent property of anticipating target and can be coordinated to realize a given schedule, finger movements have stereotyped patterns during hand grasping. Finger movements have been studied in the past to find out the coordination pattern of hand joint angular movement. These studies analyzed only a few finger joints for a limited number of hand postures. This study investigated fourteen joint angles during eight hand-grasping motions to analyze the angular correlations between finger joints and to suggest motion factors which represent hand grasping. Hand grasping motions including forward arm motion were examined in ten healthy volunteers. Eight objects were used to represent real hand grasping tasks. $CyberGlove^{TM}$ and $Fasreack^{TM}$ measured hand joint angles and wrist origin. Joint angle correlations between PIJ(proximal interphalangeal joint) and MPJ(metacarpophalangeal joint) at one finger, between neighboring PIJs and MPJs were four factors related to the fast phase of hand grasping motions and eight factors related to the slow phase of hand grasping motions.

  • PDF

Effect of the Earth Pressure Coefficient on the Support System in Jointed Rock Mass

  • Son, Moorak;Adedokun, Solomon;Hwang, Youngcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.2
    • /
    • pp.33-43
    • /
    • 2015
  • This paper investigated the magnitude and distribution of earth pressure on the support system in jointed rock mass by considering different earth pressure coefficients, rock types and joint inclination angles. The study mainly focused on the effect of the earth pressure coefficients on the earth pressure. Based on a physical model test (Son & Park, 2014), extended studies were conducted considering rock-structure interactions based on the discrete element method, which can consider the joints characteristics of rock mass. The results showed that the earth pressure was highly influenced by the earth pressure coefficients as well as the rock type and joint inclination angles. The effects of the earth pressure coefficients increased when the rock suffered more weathering and has no joint slide. The test results were also compared with Peck's earth pressure for soil ground, and clearly showed that the earth pressure in jointed rock mass can be greatly different from that in soil ground. This study indicated the earth pressure coefficients considering the rock types and joint inclination angles are important parameters influencing the magnitude and distribution of earth pressure, which should be considered when designing the support systems in jointed rock mass.

Improvement of Upper Extremity Function and Leisure Satisfaction of Children with Brain Lesions through Sports Stacking Activities: A Case Study

  • Ae-Lyeong Kwon;Ki-Jeon Kim
    • The Journal of Korean Physical Therapy
    • /
    • v.36 no.2
    • /
    • pp.53-60
    • /
    • 2024
  • Purpose: This study aimed to investigate changes in upper extremity joints and leisure satisfaction in children with brain lesions through sports stacking activities. Methods: A sports stacking program was conducted on three children with brain lesions who had upper extremity joint limitations and joint range of motion lower than the normal range. It was conducted 10 times, 1 to 2 times a week, 40 minutes each time. Upper extremity joint angles were measured using a goniometer in the order of shoulder, elbow, wrist, and fingers, and leisure satisfaction was measured using a smile evaluation. Results: As a result of measuring the upper extremity joint angles, all three children showed slight angle changes in the shoulder, elbow, and wrist areas. Differences in joint angles appeared differently for each child. Smile evaluation results were evaluated in various psychological, educational, and physical aspects. Only child A was evaluated for Smile Evaluation No. 1. Conclusion: Sports stacking activities changed the upper extremity function of children with brain lesion disorders and showed differences in psychological, physical, and educational aspects of leisure satisfaction. As this is a short-term study result, the change in upper extremity function is minimal, but if sports stacking activities are continued, it will be a rehabilitation program that can prevent upper extremity dysfunction and improve physical strength. Accordingly, continuous attention should be paid to increasing accessibility and enjoyment of daily life according to individual characteristics and level.

Development of Optimal Path Planning for Automated Excavator (자동화 굴삭기 최적경로 생성 알고리즘 개발)

  • Shin, Jin-Ok;Park, Hyong-Ju;Lee, Sang-Hak;Hong, Dae-Hee
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.78-83
    • /
    • 2007
  • The paper focuses on the establishment of optimized bucket path planning and trajectory control designated for force-reflecting backhoe reacting to excavation environment, such as potential obstacles and ground characteristics. The developed path planning method can be used for precise bucket control, and more importantly for obstacle avoidance which is directly related to safety issues. The platform of this research was based on conventional papers regarding the kinematic model of excavator. Jacobian matrix was constructed to find optimal joint angles and rotation angles of bucket from position and orientation data of excavator. By applying Newton-Raphson method optimal joint angles and bucket orientation were derived simultaneously in the way of minimizing positional errors of excavator. The model presented in this paper was intended to function as a cornerstone to build complete and advanced path planning of excavator by implementing soil mechanics and further study of excavator dynamics together.

  • PDF

Comparison of Isometric Knee Extension Torque-Angle Relationship between Taekwondo Athletes and Normal Adults (태권도 선수와 일반인의 등척성 무릎신전 토크-각도 관계 특성 비교 분석)

  • Jo, Gye-Hun;Oh, Jeong-Hoon;Lee, Hae-Dong
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.3
    • /
    • pp.275-281
    • /
    • 2015
  • Objective : In order for Taekwondo athletes to perform destructive kicking performance, they are expected to have Taekwondo-specific muscle properties such as high muscle strength and power. The purpose of this study was to investigate the joint angle-dependent force-producing property of Taekwondo athletes' knee extensor muscles, which is one of the primary muscle groups involved in kicking performance. Method : Ten Taekwondo male athletes (age: $19.9{\pm}0.7yrs$, height: $180.6{\pm}6.2cm$, body mass: $75.9{\pm}8.9kg$, career: $9.2{\pm}2.9yrs$.) and 10 healthy male non-athletes (age: $26.3{\pm}2.6yrs$, height: $174.2{\pm}4.8cm$, body mass: $72.8{\pm}7.7kg$) participated in this study. Subjects performed maximum isometric knee extension at knee joint angles of $40^{\circ}$, $60^{\circ}$, $80^{\circ}$, and $100^{\circ}$ (the full knee extension was set to $0^{\circ}$) with the hip joint angles of $0^{\circ}$ and $80^{\circ}$ (the full extension was set to $0^{\circ}$). During the contractions, knee extension torque using an isokinetic dynamometer simultaneously with muscle activities of the rectus femoris (RF), and the vastus lateralis (VL) and vastus medialis (VM) using surface electromyography were recorded. Based on the torque values at systematically different knee-hip joint angles, the joint torque-angle relationships were established and then the optimal joint angle for the knee extensor was estimated. Results : The results of this study showed that the isometric knee extension torque values were greater for the Taekwondo athletes compared with the non-athlete group at all hip-knee joint angle combinations (p<.05). When the hip joint was set at $80^{\circ}$, the peak isometric torque was greater for the Taekwondo athletes compared with the non-athlete group ($313.61{\pm}36.79Nm$ and $221.43{\pm}35.92Nm$, respectively; p<.05) but the estimated optimum knee joint angles were similar ($62.33{\pm}5.71^{\circ}$ and $62.30{\pm}4.67^{\circ}$ for the Taekwondo athletes and non-athlete group, respectively). When the hip joint was set at $0^{\circ}$, the peak isometric torque was greater for the Taekwondo athletes compared with the non-athlete group ($296.29{\pm}45.13Nm$ and $199.58{\pm}25.23Nm$, respectively; p<.05) and the estimated optimum knee joint angle was larger for the Taekwondo athletes compared with the non-athlete group ($78.47{\pm}5.14^{\circ}$ and $67.54{\pm}5.77^{\circ}$, respectively; p<.05). Conclusion : The results of this study suggests that, compared with non-athletes, Taekwondo athletes have stronger knee extensor strength at all hip-knee joint angle combinations as well as longer optimum muscle length, which might be optimized for the event-specific required performance through prolonged training period.

Determination of Femoral and Tibial Joint Reference Angles in Small-breed Dogs

  • Kim, Jooho;Heo, Suyoung;Na, Jiyoung;Kim, Namsoo;Kim, Minsu;Jeong, Seongmok;Lee, HaeBeom
    • Journal of Veterinary Clinics
    • /
    • v.33 no.6
    • /
    • pp.340-345
    • /
    • 2016
  • The present study determined the normal reference ranges for the femoral and tibial joint orientation angles of small-breed dogs. For this purpose, 60 each of cadaveric canine femurs and tibias from normal small-breed dogs (Maltese, Poodle, Shih Tzu, Yorkshire Terrier) were examined with radiographs and photographs. Axial and frontal radiographs and photographs of each bone were obtained, from which anteversion and inclination angles, anatomic lateral proximal and distal femoral angles (aLPFA and aLDFA), mechanical lateral proximal and distal femoral angles (mLPFA and mLDFA), and mechanical medial proximal and distal tibial angles (mMPTA and mMDTA) were measured. The 95% CI for radiographic values of all femurs and tibiae were anteversion angle, $23.4-27.4^{\circ}$; inclination angle, $128.4-130.4^{\circ}$; aLPFA, $117.8-122.1^{\circ}$; aLDFA, $93.7-95.2^{\circ}$; mLPFA $113.8-117.3^{\circ}$; mLDFA $99.2-100.5^{\circ}$; mMPTA $96.8-98.5^{\circ}$; mMDTA $89.4-90.7^{\circ}$. The Maltese had a larger anteversion angle than the Poodle and the Yorkshire Terrier and a larger mLPFA than the Poodle. In the comparison between the radiographs and the photographs, significant differences were found in the anteversion angle, mLPFA, mMPTA, and mMDTA. The established normal reference values might be useful for determining whether a valgus or varus deformity of the femur or the tibia is present and if so, the degree of angular correction needed.

The Analysis of GRF and joint angles of young and older adult by Vibration Stimulation on the Ankle-Joint in stair-descent activity (족관절에 인가한 진동자극이 계단 하강 동작에서 청년과 노인의 관절각도와 지면반발력에 미치는 영향)

  • So, H.J.;Kwak, K.Y.;Kim, S.H.;Yang, Y.S.;Kim, N.G.;Kim, D.W.
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.1
    • /
    • pp.61-73
    • /
    • 2011
  • The purpose of this study was to investigate changes in the center of pressure (COP), ground reaction force (GRF) and joint angles of elderly people and young people while stair-descent. The participants in this experiment were 5 elderly people and 5 young people, each of which was asked to descend stairs of three different heights (8 cm, 16 cm, and 32 cm). As they climbed down the stairs, they received vibration stimulation on the lower limb. The change of COP, GRF and joint angles were analyzed during the standing phase. COP decreased as the Achilles tendon and tibialis anterior tendon were vibrated. Vertical GRF increased as the Achilles tendon was vibrated, and the joint angle differed according to vibration stimulation conditions. These results mean that ankle joint, knee joint and hip joint were influenced by the vibrations on the lower limb as the participants descended the stairs. It was concluded that the vibration stimulation on the lower limb allowed the participants to efficiently climb down the stairs.

Difference of Proprioceptive Sense at Elbow Joint According to Measurement Methods (팔굽관절에서 측정방법에 따른 고유수용성감각 차이)

  • Lee, Jung-Ah;Kim, Duk-Hwa;Shin, Hwa-Kyung;Choi, Kyu-Hwan;Kwon, Oh-Yun
    • Physical Therapy Korea
    • /
    • v.10 no.3
    • /
    • pp.63-70
    • /
    • 2003
  • The purpose of this study was to compare the difference of joint position sense between measurements. Fourteen healthy male subjects were recruited for this study. The elbow joint position senses were measured using angle reproduction test. The elbow joint position sense was assessed with three experimental conditions: ipsilateral reproduction test in open-chain condition, contralateral reproduction test in open-chain condition, ipsilateral reproduction test with weight in open-chain condition and ipsilateral reproduction test in closed-chain condition. The angular difference between stimulus position and the reproduced position (angular error) was calculated in all testing conditions to examine the accuracy of the joint position sense. One way ANOVA was used to compare the error angles in all experimental conditions. The error angles between measurements were significantly different in elbow joint. The error angles was smallest in ipsilateral reproduction test with weight in open-chain condition and was greatest in the contralateral reproduction test in open-chain condition. Findings of this study indicate that testing methods, types of task, existence of resistance should be considered in clinical assessment for the joint position sense.

  • PDF