• 제목/요약/키워드: Joint and Link Compliances

검색결과 4건 처리시간 0.018초

Design of a Novel Polishing Tool Mechanism with 3-axis Compliance

  • Gi-Seong Kim;Han Sung Kim
    • 한국산업융합학회 논문집
    • /
    • 제26권6_1호
    • /
    • pp.993-999
    • /
    • 2023
  • In this paper, a novel polishing tool mechanism with 3-axis compliance is presented, which consists of 2-axis rotational and 1-axis linear compliances in series. The 2-axis rotational compliance mechanism is made up of four cantilever beams for adjusting rotational stiffness and one flexure universal joint at the center for constraining the z-axis deflection. The 2-axis rotational compliance can mechanically adjust the polishing tool to machined surfaces. The polishing press force can be simply controlled by using a linear spring along the z-axis. The 2-axis rotational and 1-axis linear compliance design is decoupled. The stiffness analysis of the 2-axis compliance mechanism was performed based on link compliance matrix and rigid body transformation. A 3-axis polishing tool was designed by configuring the 2-axis compliance mechanism and one linear spring.

저자유도 평면 병렬형 기구의 강성 해석 (Stiffness Analysis of a Low-DOF Planar Parallel Manipulator)

  • 김한성
    • 한국정밀공학회지
    • /
    • 제26권8호
    • /
    • pp.79-88
    • /
    • 2009
  • This paper presents the analytical stiffness analysis method for a low-DOF planar parallel manipulator. An n-DOF (n<3) planar parallel manipulator to which 1- or 2-DOF serial mechanism is connected in series may be used as a positioning device in planar tasks requring high payload and high speed. Differently from a 3-DOF planar parallel manipulator, an n-DOF planar parallel counterpart may be subject to constraint forces as well as actuation forces. Using the theory of reciprocal screws, the planar stiffness is modeled such that the moving platform is supported by three springs related to the reciprocal screws of actuations (n) and constraints (3-n). Then, the spring constants can be precisely determined by modeling the compliances of joints and links in serial chains. Finally, the stiffness of two kinds of 2-DOF planar parallel manipulators with simple and complex springs is analyzed. In order to show the effectiveness of the suggested method, the results of analytical stiffness analysis are compared to those of numerical stiffness analysis by using ADAMS.

저자유도 병렬형 로봇의 강성 모델링 (Stiffness Modeling of a Low-DOF Parallel Robot)

  • 김한성
    • 제어로봇시스템학회논문지
    • /
    • 제13권4호
    • /
    • pp.320-328
    • /
    • 2007
  • This paper presents a stiffness modeling of a low-DOF parallel robot, which takes into account of elastic deformations of joints and links, A low-DOF parallel robot is defined as a spatial parallel robot which has less than six degrees of freedom. Differently from serial chains in a full 6-DOF parallel robot, some of those in a low-DOF parallel robot may be subject to constraint forces as well as actuation forces. The reaction forces due to actuations and constraints in each serial chain can be determined by making use of the theory of reciprocal screws. It is shown that the stiffness of an F-DOF parallel robot can be modeled such that the moving platform is supported by 6 springs related to the reciprocal screws of actuations (F) and constraints (6-F). A general $6{\times}6$ stiffness matrix is derived, which is the sum of the stiffness matrices of actuations and constraints, The compliance of each spring can be precisely determined by modeling the compliance of joints and links in a serial chain as follows; a link is modeled as an Euler beam and the compliance matrix of rotational or prismatic joint is modeled as a $6{\times}6$ diagonal matrix, where one diagonal element about the rotation axis or along the sliding direction is infinite. By summing joint and link compliance matrices with respect to a reference frame and applying unit reciprocal screw to the resulting compliance matrix of a serial chain, the compliance of a spring is determined by the resulting infinitesimal displacement. In order to illustrate this methodology, the stiffness of a Tricept parallel robot has been analyzed. Finally, a numerical example of the optimal design to maximize stiffness in a specified box-shape workspace is presented.

유전 알고리듬을 이용한 매니퓰레이터 조인트의 마찰력 규명 및 실험적 검증 (Manipulator Joint Friction Identification using Genetic Algorithm and its Experimental Verification)

  • 김경호;박윤식
    • 대한기계학회논문집A
    • /
    • 제24권6호
    • /
    • pp.1633-1642
    • /
    • 2000
  • Like many other mechanical dynamic systems, flexible manipulator systems experience stiction or sticking friction, which may cause input-dependent instabilities. Manipulator performance can be enha nced by identifying friction but it is hard and expensive to measure friction by direct and precise sensing of contact displacements and forces. This study addresses the problem of identifying flexible manipulator joint friction. A dynamic model of a two-link flexible manipulator based upon finite element and Lagrange's method is constructed. The dynamic model includes the effects of joint compliances and actuator dynamics. Friction is also incorporated in the dynamic model to account for stick-slip at the joints. Next, the friction parameters are to be determined. The identification problem is posed as an optimization problem to be solved using nonlinear programming methods. A genetic algorithm is used to increase the convergence rate and the chances of finding the global optimum. The identified friction parameters are experimentally verified and it is expected that the identification technique is applicable to a system parameter identification problem associated with a wide class of nonlinear systems.