• Title/Summary/Keyword: Joint Vibration analysis

Search Result 212, Processing Time 0.024 seconds

Vibration Power Flow Analysis of Coupled co-planar Plate Structures (동일 평면상에서 연성된 평판구조물 진동의 파워흐름해석)

  • 박도현;홍석윤;길현권
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.311-318
    • /
    • 1998
  • In this paper, the power flow analysis(PFA) method is applied to the prediction of the vibrational energy density and intensity of coupled co-planar plates. To cover the energy transmission and reflection at the joint of the plates, the wave transmission approach is introduced with the assumption that all the incident waves are normal to the joint. By changing the frequency ranges and internal loss factors, we have obtained the PFA results, and compared them with the analytical exact solutions.

  • PDF

Modeling and Vibration Analysis of Vehicle Structures Using Equivalent Beam Stiffness for Joints (결합부 등가빔을 이용한 저진동 차체의 모델링 및 해석기법)

  • 임홍재;김윤영;이상범;송명의
    • Journal of KSNVE
    • /
    • v.5 no.4
    • /
    • pp.537-542
    • /
    • 1995
  • In this paper the method of modeling and optimization for the joint of the vehicle structure is proposed. First it is described that the method of substituting equivalent beam elements to spring elements for the joint. The stiffnesses of the spring elementsare calculated using the section properties of equivalent beam elements. To get required dynamic characteristics section properties of equivalent beam element are set to design variables and optimized. The study shows that joint stiffnesses can be effectively determined in designing vehicle structure.

  • PDF

Low-Frequency Vibration Analysis of a Center Pillar-to-Roof Rail Joint : Modelling Technique and Problems (센터 필라-루프 레일 조인트의 저진동 해석 : 모델링 기법과 문제점)

  • 김윤영;강정훈;송상헌
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.59-68
    • /
    • 1997
  • The modelling techniques of a center pillar-to-roof rail joint for low frequency vibration analysis are examined and some fundamental problems are addressed. To develop a simplified beam-spring model of the joint, the present work is focused on 1) practical shell modelling techniques and 2) joint spring stiffness estimation methods a practical model-updating method to match the calculated natural frequencies to the experimentally determine ones is proposed, particularly focusing on spot welding modelling. In joint spring modelling, the results from the model with one joint spring are compared with those from the model with three coupled springs. Finally, some fundamental problems in beam-spring modelling are addressed.

  • PDF

Vibration Analysis of Expansion Joint based on Transfer Matrix Method Considering the Rotary Inertia (회전 관성을 고려한 전달행렬법 기반의 Expansion Joint 진동해석)

  • Shin, Dong-Ho;Kim, Sang-Ho;Yoon, Hyung-Ho;Lim, Hee-Gon;Oh, Jae-Eung;Lee, Jung-Youn
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.7
    • /
    • pp.665-673
    • /
    • 2011
  • Simplified formulae for axial and bending natural frequencies of a bellows are developed using an equivalent thin-walled pipe model. The axial and bending stiffness of bellows is determined using lumped transfer matrix method. Transfer matrix method which includes the rotary inertia is used to calculate the natural frequencies for axial and lateral vibration. The result from the simplified formula are verified by those from as experiment result and a finite element analysis. This comparisons show good agreement with the each other.

Effect of the Joint Condition between Muffler Shell and Baffle on Radiated Noise (배기계 방사소음에 대한 소음기 셀/격벽간 접합구조의 영향)

  • Yang, Chul-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.3 s.108
    • /
    • pp.233-239
    • /
    • 2006
  • The effect of the joint condition of automotive muffler shell and baffle on radiated noise from muffler shell Is studied. Shell vibration characteristics, especially shift In natural frequency and change in of response amplitude, was identified from finite element analysis and modal tests for various joint conditions between shell and baffle. When there is heat expansion and inner pressure from the exhaust 9as in the muffler with elliptical cross section, the shell expands out, and construct gap with baffles. This gap causes more degrees of freedom of shell vibration and natural frequency shift. By welding the muffler shell to the baffles or using a dual shell muffler, the radiated noise problem could be mitigated supplying more a rigid joint and damping, respectively.

The Analysis of GRF and joint angles of young and older adult by Vibration Stimulation on the Ankle-Joint in stair-descent activity (족관절에 인가한 진동자극이 계단 하강 동작에서 청년과 노인의 관절각도와 지면반발력에 미치는 영향)

  • So, H.J.;Kwak, K.Y.;Kim, S.H.;Yang, Y.S.;Kim, N.G.;Kim, D.W.
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.1
    • /
    • pp.61-73
    • /
    • 2011
  • The purpose of this study was to investigate changes in the center of pressure (COP), ground reaction force (GRF) and joint angles of elderly people and young people while stair-descent. The participants in this experiment were 5 elderly people and 5 young people, each of which was asked to descend stairs of three different heights (8 cm, 16 cm, and 32 cm). As they climbed down the stairs, they received vibration stimulation on the lower limb. The change of COP, GRF and joint angles were analyzed during the standing phase. COP decreased as the Achilles tendon and tibialis anterior tendon were vibrated. Vertical GRF increased as the Achilles tendon was vibrated, and the joint angle differed according to vibration stimulation conditions. These results mean that ankle joint, knee joint and hip joint were influenced by the vibrations on the lower limb as the participants descended the stairs. It was concluded that the vibration stimulation on the lower limb allowed the participants to efficiently climb down the stairs.

The effect of whole body vibration on lower joints in vertical jump (전신진동운동이 수직점프 시 하지관절에 미치는 영향)

  • Yi, Jae-Hoon
    • Journal of Digital Convergence
    • /
    • v.14 no.6
    • /
    • pp.513-518
    • /
    • 2016
  • The Mechanisms of whole body vibration on the human body is not clearly presented despite of the research result and there is not enough research that shows the effects of vibration on the kinetic changes of the lower joint. Therefore, this study focuses on finding out which lower joint is related with kinetic vertical jump ability. Five male and five female who didn't have orthopedic history were selected as the subjects. The subjects carried out three squat jumps before and after 5minutes of 30Hz whole body vibration. We have utilized a 3D motion analysis system to analyze the kinetic changes of the lower joint in the vertical jump. The height of subjects squat jump was improved after whole body vibration treatment. Also, the lower joint moment and power increased. However, there were no statistically significant changes in GRF, hip joint moment and power after the whole body vibration proved to have positive effect on the ankle and knee joints but showed negative effect on the hip joint.

Analysis on a Hip Joint System of New RGO Using Accelerometers (가속도계를 이용한 왕복보행보조기의 고관절 시스템 해석 -인체 진동해석과 FEM 해석을 중심으로-)

  • 김명회;장대진;장영재;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.882-887
    • /
    • 2003
  • This paper presented a design and control of a new RGO(reciprocating gait orthosis)and its simulation. The new RGO was distinguished from the other one by which had a very light-weight and a new RGO(reciprocating gait orthosis) system. The vibration evaluation of the hip joint system on the new RGO(reciprocating gait orthosis)was used to access by the 3-axis accelerometer with a low frequency vibration of less than 30 ㎐. The gait of the new RGO depended on the constrains of mechanical kinematics and the initial posture. The stability of dynamic walking was investigated by analyzing the ZMP (zero moment point) of the new RGO. It was designed according to the human wear type and was able to accomodate itself to the environments of S.C.I. Patients. The joints of each leg were adopted with a good kinematic characteristics. To analyse joint kinematic properties, we made the hip joint system of FEM and the hip joint system by 1-axis and 3-axis Accelerometers.

  • PDF