• Title/Summary/Keyword: Joint Vibration analysis

Search Result 212, Processing Time 0.027 seconds

Decentralized Robust Adaptive Neural Network Control for Electrically Driven Robot Manipulators with Bounded Input Voltages (제한된 입력 전압을 갖는 전기 구동 로봇 매니퓰레이터에 대한 분산 강인 적응 신경망 제어)

  • Shin, Jin-Ho;Kim, Won-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.11
    • /
    • pp.753-763
    • /
    • 2015
  • This paper proposes a decentralized robust adaptive neural network control scheme using multiple radial basis function neural networks for electrically driven robot manipulators with bounded input voltages in the presence of uncertainties. The proposed controller considers both robot link dynamics and actuator dynamics. Practically, the controller gain coefficients applied at each joint may be nonlinear time-varying and the input voltage at each joint is saturated. The proposed robot controller overcomes the various uncertainties and the input voltage saturation problem. The proposed controller does not require any robot and actuator parameters. The adaptation laws of the proposed controller are derived by using the Lyapunov stability analysis and the stability of the closed-loop control system is guaranteed. The validity and robustness of the proposed control scheme are verified through simulation results.

Identification of Dynamic Joint Characteristics Using a Multi-domain FRF- based Substructuring Method (전달함수 다중합성법을 이용한 진동시스템의 결합부 특성값 동정)

  • 이두호;황우석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.635-644
    • /
    • 2004
  • A method of identifying structural parameters such as stiffness and damping coefficients at interfacial points of vibro-acoustic systems is suggested using an optimization technique. To identify the parameters using a numerical optimization algorithm, cost functions are defined. The cost function should be zero at the correct parameter values. To minimize the cost functions using an optimization technique, a design sensitivity analysis procedure is developed in the framework of the multi-domain FRF-based substructuring method. As a numerical example, a ladder-like structure problem is introduced. With known parameter values and different initial guesses of the parameters, convergence characteristics to the exact value are compared f3r the three cost functions. Investigating the contours of the cost functions, we find the first cost function has the largest convergent region to the correct value. As another practical problem, stiffnesses of engine mounts and bushings in a passenger car are identified. The numerical examples show that the proposed method is efficient and accurate far realistic problems.

  • PDF

Identification of Dynamic Joint Characteristics Using a Multi-domain FRF-based Substructuring Method (전달함수 다중합성법을 이용한 진동시스템의 결합부 특성값 추정)

  • 황우석;이두호
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.6
    • /
    • pp.536-545
    • /
    • 2004
  • A method of identifying structural parameters such as stiffness and damping coefficients at interfacial points of vibro-acoustic systems is suggested using an optimization technique. To identify the parameters using a numerical optimization algorithm, cost functions are defined. The cost function should be zero at the correct parameter values. To minimize the cost functions using an optimization technique, a design sensitivity analysis procedure is developed in the framework of the multi-domain FRF-based substructuring method. As a numerical example, a ladder-like structure problem is introduced. With known parameter values and different initial guesses of the parameters, convergence characteristics to the exact value are compared for the three cost functions. Investigating the contours of the cost functions, we find the first cost function has the largest convergent region to the correct value. As another practical problem, the stiffnesses of engine mounts and bushings in a passenger car are identified. The numerical examples show that the proposed method is efficient and accurate for realistic problems.

Vibration Fatigue Analysis of Spot Welded Component considering Change of Stiffness due to Fatigue Damage (피로손상의 누적에 따른 강성변화를 고려한 점용접부의 진동피로해석)

  • Kang, Ki-Weon
    • Journal of the Korea Convergence Society
    • /
    • v.5 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • The purpose of this paper was to evaluate the fatigue life to apply the vibration fatigue analysis considering the stiffness change of the spot welding due to fatigue damage accumulation. For this, the mechanical and fatigue properties of base and spot welded standard specimens were obtained through the tensile and constant amplitude fatigue test. The transfer function of the spot-welded structure was obtained from the frequency response analysis and fatigue analyisis was performed under the condition of PSD=0.11. A vibration fatigue analysis that considered changes in the frequency response due to the fatigue damage that is, failure of some wleding point was conducted on spot-welded structure. The fatigue life of the spot-welded structure was determined by combining the transfer function, the S-N curve of the tensile-shear spot-welded joint and the input PSD.

The Effect of the ZLR and Tied Sleeper to Reduce the Track Irregularity in the Bridge Expansion Joint Zone (교량신축부에서의 궤도틀림 저감을 위한 활동체결구 및 침목결속 효과)

  • Kang, Tae-Ku;Min, Kyung-Ju;Lim, Nam-Hyoung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2405-2408
    • /
    • 2011
  • In recent time, the cause analysis and the reduction of the track irregularity have become the most important issue in the ballasted track on the high-speed railway bridge. This is because that the frequency of the maintenance work at the bridge expansion joint zone is on the rise. The track irregularity on the railway bridge starts at the end of the bridge-deck and spreads along the bridge. Due to the dynamic vibration and the thermal expansion of the bridge, the compaction of the ballast gravel on the bridge expansion joint zone become loose and then the progress of the track irregularity result from the train-induced dynamic impact is accelerating further. Among the several options for reducing the track irregularity on the bridge expansion joint zone, the application and efficiency of the zero longitudinal restraint(ZLR) and tied sleeper are investigated in this paper. Field test construction has been conducted, then the progress of the track irregularity and the frequency of the maintenance work are analyzed before and after the filed test construction. Of the two methods, it is shown that the installation of the ZLR seems to be better than the tied sleeper.

  • PDF

Dynamic Modeling and Analysis of Flexible Mechanism With Joint Clearance (유연한 기구의 틈새관절 모델링 및 해석방법에 관한 연구)

  • 홍지수;김호룡
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3109-3117
    • /
    • 1994
  • To operate a flexible mechanism in high speed its weight must be reduced as far as the structural strength does not decrease too much, but a light-weighted mechanism causes undesirable elastodynamic responses deteriorating the system performance. Besides, clearance within the connections of mechanisms causes rapid wear, increased noise and vibration. Even if the problems described above must be considered in the initial design stage, there has been no effective design process which takes account of the correlation between dynamic characteristics of flexible mechanism and the clearance effect at the joint. In this study, the generalized elastodynamic governing equations which include dynamic characteristics and boundary conditions of flexible mechanism are derived by variational calculus and solved by using FFM theory. To take the clearance effect at joint into account a new dynamic model is presented and also the method of modified stiffness/damping matrix is proposed to activate the dynamic clearance model, which cooperates with the developed governing equation very easily. As the results of this study, the proposed method(modified stiffness/damping matrix) to calculate clearance effect was proved to be superior to the existing one(force reaction method) in solution convergency and calculation performance. Besides this method can be easily adopted to the complex shape joint without calculation of reaction force direction.

A Study on the Flexural Behaviors of RC Slabs of Widened Bridges (확폭교량 RC 상판의 휨거동에 관한 연구)

  • 홍순길;장동일
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.3
    • /
    • pp.152-161
    • /
    • 1994
  • Most widened bridges have been constructed by the joining-construction method that makes new and existing bridges structurally a single structure. Since the joining-construction method has several problems in design and construction viewpoint, this study is conducted in order to investigate the structural behaviors of RC slabs, which are widened and influenced by traffic-induced vibration of existing bridge during placing and curing of new concrete, with the prototype flexural strength test and FEM analysis. It was found that cracks are generated in construction joint at low applied load and that stress concentration at the joints and slips between steel bar and concrete are occured. But, the decreasing of load carrying capacity is negligible according to the traffic-induced vibration as well as the difference of construction method.

A Test Procedure for Road Noise Evaluation (승용차의 도로면 소음 평가를 위한 시험절차 고찰)

  • 조영호;고강호;허승진;국형석;김찬묵;기지현;최윤봉
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.980-985
    • /
    • 2002
  • Several tests are performed to evaluate road booming noise. Baseline test delivers the information of road noise characteristics. Coupling effect between structure and acoustics is obtained from the mode shapes and the natural frequencies by the modal test. Equivalent stiffness at joint areas between chassis and car-body system can be determined by the input point inertance test. Noise sensitivity of body mounting point of a chassis part can be obtained from the noise transfer function test with input point inertance test. Operational deflection shape makes us analyze the actual vibration modes of the chassis system under actual loading and find noise sources very easily. finally, the transfer function analysis is used to identify noise paths through the chassis system. However, all of the tests above mentioned must be performed to evaluate road booming noise. The objectives and the procedures of the tests are described in this paper. Also, the guideline for efficient road noise evaluation test can be found.

  • PDF

Development of Ship Vibration Analysis Software PFADS-R3 and Its Applications

  • Hong Suk-Yoon;Seo Seong-Hoon;Park Young-Ho;Lee Ho-Won
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.4
    • /
    • pp.26-33
    • /
    • 2004
  • PFFEM software, PFADS has been developed for the vibration predictions and analysis of coupled system structures in medium-to-high frequency ranges. PFFEM is numerical method which solves energy governing equation using finite element technique for complicated structures where the exact solutions are not available. Through the upgrades, present PFADS R3 could cover the general beam and plate structures including various kinds of beam-plate rigid joints and other joint systems such as spring-damper junction and rigid bar connection. This software is composed of 3 parts; translator, model converter and solver. The translator makes its own FE-model from bulk data of commercial FE software, and the model converter is used to convert FE-model to PFFE-model automatically. The solver calculates vibrational energy density and intensity for PFFE-model by solving global matrix equations of PFFEM. For the applications of real transportation systems, a container ship model has been examined with respect to major parameters, and reliable results have been obtained.

Analysis on the Vibration Characteristics of Reduction Gear Units for High-speed Trains (고속철도차량 감속구동장치 진동특성 분석)

  • Moon, Kyung Ho;Lee, Dong-Hyong;Kim, Jae Chul;Ji, Hae Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.7
    • /
    • pp.694-701
    • /
    • 2013
  • The gear-reduction units of Korean high-speed trains consist of a motor reduction unit, an axle gear box reduction unit, and a tripod joint shaft. A reduction gear unit is a gearbox used to reduce the rotational speed of the input shaft to a slower rotational speed on the output shaft. This reduction in output speed helps to increase torque. Defective reduction gear units in high-speed trains are caused by damage to the gear or by gear fatigue. To diagnose potential problems, it is important to know the vibration characteristics of the reduction gear units. In this study, we analyzed the vibration characteristics of reduction gears under various conditions. The test setup included a full-scale test rig to evaluate reduction gear under both normal and extreme operating conditions.