• Title/Summary/Keyword: Joint Tuning

Search Result 35, Processing Time 0.018 seconds

Supervised learning-based DDoS attacks detection: Tuning hyperparameters

  • Kim, Meejoung
    • ETRI Journal
    • /
    • v.41 no.5
    • /
    • pp.560-573
    • /
    • 2019
  • Two supervised learning algorithms, a basic neural network and a long short-term memory recurrent neural network, are applied to traffic including DDoS attacks. The joint effects of preprocessing methods and hyperparameters for machine learning on performance are investigated. Values representing attack characteristics are extracted from datasets and preprocessed by two methods. Binary classification and two optimizers are used. Some hyperparameters are obtained exhaustively for fast and accurate detection, while others are fixed with constants to account for performance and data characteristics. An experiment is performed via TensorFlow on three traffic datasets. Three scenarios are considered to investigate the effects of learning former traffic on sequential traffic analysis and the effects of learning one dataset on application to another dataset, and determine whether the algorithms can be used for recent attack traffic. Experimental results show that the used preprocessing methods, neural network architectures and hyperparameters, and the optimizers are appropriate for DDoS attack detection. The obtained results provide a criterion for the detection accuracy of attacks.

Task Reconstruction Method for Real-Time Singularity Avoidance for Robotic Manipulators : Dynamic Task Priority Based Analysis (로봇 매니플레이터의 실시간 특이점 회피를 위한 작업 재구성법: 동적 작업 우선도에 기초한 해석)

  • 김진현;최영진
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.10
    • /
    • pp.855-868
    • /
    • 2004
  • There are several types of singularities in controlling robotic manipulators: kinematic singularity, algorithmic singularity, semi-kinematic singularity, semi-algorithmic singularity, and representation singularity. The kinematic and algorithmic singularities have been investigated intensively because they are not predictable or difficult to avoid. The problem with these singularities is an unnecessary performance reduction in non-singular region and the difficulty in performance tuning. Tn this paper, we propose a method of avoiding kinematic and algorithmic singularities by applying a task reconstruction approach while maximizing the task performance by calculating singularity measures. The proposed method is implemented by removing the component approaching the singularity calculated by using singularity measure in real time. The outstanding feature of the proposed task reconstruction method (TR-method) is that it is based on a local task reconstruction as opposed to the local joint reconstruction of many other approaches. And, this method has dynamic task priority assignment feature which ensures the system stability under singular regions owing to the change of task priority. The TR-method enables us to increase the task controller gain to improve the task performance whereas this increase can destabilize the system for the conventional algorithms in real experiments. In addition, the physical meaning of tuning parameters is very straightforward. Hence, we can maximize task performance even near the singular region while simultaneously obtaining the singularity-free motion. The advantage of the proposed method is experimentally tested by using the 7-dof spatial manipulator, and the result shows that the new method improves the performance several times over the existing algorithms.

A New Adaptive Fuzzy Approach for Control of a Bipedal Robot (이족 보행 로봇 제어에 대한 새로운 적응 퍼지 접근방법)

  • Hwang, Jae-Pil;Kim, Eun-Tai
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.5 s.305
    • /
    • pp.13-18
    • /
    • 2005
  • Over the last few years, the control of bipedal robot has been considered a promising but difficult research field in the community of robotics. In this paper, a new robust output control method for a bipedal robot is proposed using the adaptive fuzzy logic. The adaptive fuzzy logic is used as an system approximator to cancel the unknown uncertainty. First, a model for a bipedal robot including switching leg influence, uncertainty and disturbance is presented. Second, a controller is designed in which the joint velocity measurement is not required. Fuzzy approximation error estimator is inserted in the system for tuning the fuzzy logic. Finally, the result of the computer simulation is presented to show the validity of the suggested control method.

Development of Joint-Based Motion Prediction Model for Home Co-Robot Using SVM (SVM을 이용한 가정용 협력 로봇의 조인트 위치 기반 실행동작 예측 모델 개발)

  • Yoo, Sungyeob;Yoo, Dong-Yeon;Park, Ye-Seul;Lee, Jung-Won
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.12
    • /
    • pp.491-498
    • /
    • 2019
  • Digital twin is a technology that virtualizes physical objects of the real world on a computer. It is used by collecting sensor data through IoT, and using the collected data to connect physical objects and virtual objects in both directions. It has an advantage of minimizing risk by tuning an operation of virtual model through simulation and responding to varying environment by exploiting experiments in advance. Recently, artificial intelligence and machine learning technologies have been attracting attention, so that tendency to virtualize a behavior of physical objects, observe virtual models, and apply various scenarios is increasing. In particular, recognition of each robot's motion is needed to build digital twin for co-robot which is a heart of industry 4.0 factory automation. Compared with modeling based research for recognizing motion of co-robot, there are few attempts to predict motion based on sensor data. Therefore, in this paper, an experimental environment for collecting current and inertia data in co-robot to detect the motion of the robot is built, and a motion prediction model based on the collected sensor data is proposed. The proposed method classifies the co-robot's motion commands into 9 types based on joint position and uses current and inertial sensor values to predict them by accumulated learning. The data used for accumulating learning is the sensor values that are collected when the co-robot operates with margin in input parameters of the motion commands. Through this, the model is constructed to predict not only the nine movements along the same path but also the movements along the similar path. As a result of learning using SVM, the accuracy, precision, and recall factors of the model were evaluated as 97% on average.

Evanescent-mode Waveguide Band-pass Filter Applied by Novel Metal Post Capacitor (새로운 금속막대 커패시터를 적용한 감쇄모드 도파관 대역통과 여파기)

  • Kim, Byung-Mun;Yun, Li-Ho;Lee, Sang-Min;Hong, Jae-Pyo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.775-782
    • /
    • 2022
  • In this paper, a novel small-diameter cylindrical post capacitor inserted into an evanescent-mode rectangular waveguide (EMRWG) is proposed for easier tuning. In order to feed the EMRWG, the proposed structure uses a single ridge rectangular waveguide with the same width and height as the waveguide at the input and output ends. The inserted post capacitor are made up a circular groove formed in the center of the lower part of the broad wall of the EMRWG, and a concentric cylindrical post inserted into the upper part. First, the equivalent circuit model for the proposed structure is presented. When the EMRWG and the single ridge waveguide are combined, the joint susceptance and the turns ratio of the ideal transformer are calculated by two simulations using HFSS (3d fullwave simulator, Ansoft Co.) respectively. The susceptance and resonance characteristics of the inserted post were analyzed by using the obtained parameters and the characteristics of the EMRWG. A 2-post filter with a center frequency of 4.5 GHz and a bandwidth of 170 MHz was designed using a WR-90 waveguide, and the simulation results by using the HFSS and CST, equivalent circuit model were in good agreement.