• Title/Summary/Keyword: Joint Stiffness

Search Result 816, Processing Time 0.035 seconds

Joint Stiffness Evaluation in Jointed Plain Concrete Pavement (줄눈 콘크리트 포장의 줄눈강성 산정 연구)

  • Chon, Beom Jun;Lee, Seung Woo;Kwon, Soon-Min;Kim, Seong-Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1D
    • /
    • pp.49-54
    • /
    • 2009
  • The excellent load transfer at transverse joints ensures the high performance of jointed plane concrete pavements(JPCP). Load transfer efficiency(LTE) is affected by dowel-bars, aggregate interlock and types of underlying layers, and these factors have to be modelled adequately for a reasonable analysis of JPCP. Generally, the joint stiffness has been represented by a spring model for the shear transfer by aggregate interlock or dowels. However dowel-bars, aggregate interlock and types of underlying layers have not been considered together in the design of joints. In this study, the joint stiffness that considered those factors was presented by comparing LTE obtained using FWD(Falling Weight Deflectometer) with theoretical results obtained using the finite element analysis. In addition, the effects of temperature and concrete age, on the joint stiffness were investigated.

Development of Stress, Load and Displacement Controlled Direct Shear Apparatus for Jointed Rock (응력, 하중, 변위제어 방식의 암석 절리면 전단시험기의 개발)

  • 김대영;천병식;서영호;이영남
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.471-477
    • /
    • 1999
  • A new stress, load and displacement controlled direct shear apparatus has recently been developed at the Hyundai Institute of Construction Technology This direct shear apparatus is capable of testing of rock joint under constant normal stiffness, constant normal stress or constant normal load boundary conditions. This paper describes this direct shear apparatus and illustrates results of shear tests at constant normal stress condition, constant normal load condition and constant normal stiffness condition with dental stones which have a same joint roughness and unconfined compressive strength.

  • PDF

Lower extremity stiffness over different landing methods during hopping (호피 시 착지방법에 따른 하지 강성도)

  • Lee, J.J.;Son, J.S.;Kim, J.Y.;Kim, Y.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.2
    • /
    • pp.105-108
    • /
    • 2011
  • The purpose of the present study was to analyze the lower stiffness over the difference between soft and stiff landings during hopping. Five male subjects performed hopping on two legs at 2.5 Hz. During the experiments, 3D motion capture system was used to obtain the kinematic data and two force plates were synchronized to calculate the kinetic data. We determined lower extremity stiffness of the knee and ankle from kinetic and kinematic data. Leg stiffness was approximately 1.2-times significantly higher in stiff landing than in soft landing_ There was no significant difference in knee joint stiffness between soft and stiff landings. Ankle joint stiffness was approximately 1.34-times significantly higher in stiff landing than in soft landing. These results suggest that humans adjust lower extremity stiffness over the comparison of two different landing methods we evaluated.

Design of a Variable-Stiffness Type Safety Joint for Service Robots (서비스 로봇용 가변강성 형 안전관절의 설계)

  • Jeong, Jae-Jin;Chang, Seung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.5
    • /
    • pp.128-134
    • /
    • 2009
  • This paper aims to design a variable-stiffness type economical safety joint for service robots. The safety joint was designed to have a passive shock absorbing mechanism for protecting human from a catastrophic collision under service condition of robots. A simple mechanism composed of two action disks for switching the load transfer, a spring and a screw for pre-load was proposed. In order to evaluate the performance of the safety joint a testing platform which can carry out the static and impact tests was also designed and fabricated. From the test results, the designed safety joint was proved to have a variable load-carrying capacity and about 42% impact absorption capacity with simple manipulation of the control screw.

Robot Calibration with Joint Stiffness Parameters for the Enhanced Positioning Accuracy (위치 정밀도 향상을 위한 관절강성 파라미터 포함 로봇 캘리브레이션)

  • Kang, Hee-Jun;Shin, Sung-Won;Ro, Young-Shick;Suh, Young-Soo;Lim, Hyun-Kyu;Kim, Dong-Hyeok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.4
    • /
    • pp.406-410
    • /
    • 2008
  • This paper presents a new robot calibration algorithm with joint stiffness parameters for the enhanced positioning accuracy of industrial robot manipulators. This work is towards on-going development of an industrial robot calibration software which is able to identify both the kinematic and non-kinematic robot parameters. In this paper, the conventional kinematic calibration and its important considerations are briefly described first. Then, a new robot calibration algorithm which simultaneously identifies both the kinematic and joint stiffness parameters is presented and explained through a computer simulation with a 2 DOF manipulator. Finally, the developed algorithm is implemented to Hyundai HX165 robot and its resulting improvement of the positioning accuracy is addressed.

Study on the change in stiffness of nailed joints due to creep (CREEP에 의한 못 결합부(結合部)의 강성도(剛性度)의 변화(變化)에 관한 연구(硏究))

  • Jang, Sang-Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.35-43
    • /
    • 1989
  • Nailed joints, which are commonly used in Wooden structures, transmit loads from one member to another and induce partial composite actions between members. Long-term loads induce creep slip in nailed joints and affect load sharing and partial composite action, which may reduce joint stiffness. Two theoretical viscous-viscoelastic models were developed for nailed joints to predict creep behavior under long-term variable loads. Those models were also used to predict stiffness changes under long-term variable loads. The stiffness of nailed joint is defined as a Secant modulus which is called the joint modulus or slip modulus. Input data for the models are the results of constant load tests under three different load levels. To verify the models, nailed joints were also tested under two long-term variable load functions. The predictions of the models were very close to the experimental data. Therefore, the theoretical viscous-viscoelastic models and procedures developed in this study can be applied to predict creep slip and the changes in joint moduli of nailed joints under long-term variable loads.

  • PDF

Ground Beam Structure Based Joint Stiffness Controlling Method for Compliant Mechanisms (컴플라이언트 메커니즘 설계를 위한 바닥 보 구조 기반 조인트 강성 조절법)

  • Jang Gang-Won;Kim Yoon-Young;Kim Myung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1187-1193
    • /
    • 2006
  • Traditionally, the continuum-based topology optimization methods employing the SIMP technique have been used to design compliant mechanisms. Although they have been successful, the optimized mechanisms by the methods are usually difficult to manufacture because of their geometrical complexities. The objective of this study is to develop a topology optimization method that can produce easy-to-fabricate mechanism structure. The proposed method is a ground beam method where beam connectivity is controlled by the beam joint stiffness. In this approach, beam joint stiffness determines the mechanism configuration. Because b the ground structure beams have uniform thicknesses varying only discretely, the resulting mechanism topologies become easily manufacturable.