• 제목/요약/키워드: Joint Path

검색결과 273건 처리시간 0.027초

로봇의 관절외란해석을 이용한 직선궤적 위치결정 (Joint disturbance torque analysis for robots and its application in straight line path placement)

  • 최명환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1824-1827
    • /
    • 1997
  • Majority of industrial robots are controlled by a simple joint servo control of joint actuators. In this type of control, the performance of control is influenced greatly by the joint interaction torques including Coriolis and centrifugal forces, which act as disturbance torques to the control system. As the speed of the robot increases, the effect of this disturbance torque increases, and makes the high speed-high precision control more difficult to achieve. In this paper, the joint disturbance torque of robots is analyzed. The joint disturbance torque is defined using the coefficients of dynamic equation of motion, and for the case of a 2DOF planar robot, the conditions for the maximum joint disturbance torques are identified, and the effect of link parameters and joint variables on the joint disturbance torque are examined. Then, a solutioin to the optimal path placement problem is proposed that minimizes the joint disturbance torque are examined. then, a solution to the optimal path placement problem is proposed that minimizes the joint disturbance torque during a straight line motion. the proposed method is illustrated using computer simulation. the proposed solution method cna be applied to the class of robots that are controlled by independent joint sevo control, which includes the vast majority of industrial robots. By minimizing the joint disturbacne torque during the motion, the simple joint servo controlled robot can move with improved path tracking accuracy at high speed.

  • PDF

독립관절제어 로봇의 관절외란해석과 최적경로위치 문제의 해법 (Joint disturbance torque analysis for independent joint controlled robots and its application in optimal path placement)

  • 최명환
    • 제어로봇시스템학회논문지
    • /
    • 제4권3호
    • /
    • pp.342-348
    • /
    • 1998
  • A majority of industrial robots are controlled by a simple joint servo control of joint actuators. In this type of control, the performance of control is greatly influenced by the joint interaction torques including Coriolis and centrifugal forces, which act as disturbance torques to the control system. As the speed of the robot increases, the effect of this disturbance torque increases, and hence makes the high speed - high precision control more difficult to achieve. In this paper, the joint disturbance torque of robots is analyzed. The joint disturbance torque is defined using the coefficients of dynamic equation of motion, and for the case of a 2 DOF planar robot, the conditions for the minimum and maximum joint disturbance torques are identified, and the effect of link parameters and joint variables on the joint disturbance torque are examined. Then, a solution to the optimal path placement problem is propose that minimizes the joint disturbance torque during a straight line motion. The proposed method is illustrated using computer simulation. The proposed solution method can be applied to a class of robots that are controlled by independent joint servo control, which includes the vast majority of industrial robots.

  • PDF

Following Path using Motion Parameters for Virtual Characters

  • Baek, Seong-Min;Jeong, Il-Kwon;Lee, In-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1621-1624
    • /
    • 2003
  • This paper presents a new method that generates a path that has no collision with the obstacles or the characters by using the three motion parameters, and automatically creates natural motions of characters that are confined to the path. Our method consists of three parameters: the joint information parameter, the behavior information parameter, and the environment information parameter. The joint information parameters are extracted from the joint angle data of the character and this information is used when creating a path following motion by finding the relation-function of the parameters on each joint. A user can set the behavior information parameter such as velocity, status, and preference and this information is used for creating different paths, motions, and collision avoidance patterns. A user can create the virtual environment such as road and obstacle, also. The environment is stored as environment information parameters to be used later in generating a path without collision. The path is generated using Hermit-curve and each control point is set at important places.

  • PDF

Construction of minimum time joint trajectory for an industrial manipulator using FTM

  • Cho, H.C.;Oh, Y.S.;Jeon, H.T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1987년도 한국자동제어학술회의논문집(한일합동학술편); 한국과학기술대학, 충남; 16-17 Oct. 1987
    • /
    • pp.882-885
    • /
    • 1987
  • The path of an industrial manipulator in a crowded workspace generally consists of 8 set of Cartesian straight line path connecting a set of two adjacent points. To achieve the Cartesian straight line path is, however, a nontrivial task and an alternative approach is to place enough intermediate points along a desired path and linearly interpolate between these points in the joint space. A method is developed that determines the subtravelling- and the transition-time such that the total travelling time for this path is minimized subject to the maximum joint velocities and accelerations constraint. The method is based on the application of nonlinear programming technique, i.e., FTM (Flexible Tolerance Method). These results are simulated on a digital computer using a six-joint revolute manipulator to show their applications.

  • PDF

컨베이어 추적을 위한 로봇 매니퓰레이터의 임의의 경로에 대한 최소시간 궤적계획 (Minimum-time trajectory planning of a robot manipulator with an arbitrary path for conveyor tracking)

  • 윤기호;정선태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.826-829
    • /
    • 1995
  • In this paper, the problem of minimum-time trajectory planning of a robot manipulator with an arbitrary path is dealt. As for a straight path, the trajectory planning can be done without difficulty since the path is easily parameterized by its length. However, this is not the case for a non-straight path. In this paper, by noting that the others' joint angles and velocities are determined if one joint's angle and velocity are known, we reduce the problem of trajectory planning on a non-straight path to one in the 2-dimensional space of one joint's angle and velocity. Then, by applying the dynamic programming, we achieve the minimum-time trajectory planning. A simulation is done for verifying this.

  • PDF

다관절 로보트를 위한 충돌 회피 경로 계획 (Collision-free path planning for an articulated robot)

  • 박상권;최진섭;김동원
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1995년도 춘계공동학술대회논문집; 전남대학교; 28-29 Apr. 1995
    • /
    • pp.629-634
    • /
    • 1995
  • The purpose of this paper is to develop a method of Collision-Free Path Planning (CFPP) for an articulated robot. First, the configuration of the robot is formed by a set of robot joint angles derived fromm robot inverse kinematics. The joint space that is made of the joint angle set, forms a Configuration space (Cspace). Obstacles in the robot workcell are also transformed and mapped into the Cspace, which makes Cobstacles in the Cspace. (The Cobstacles represented in the Cspace is actually the configurations of the robot causing collision.) Secondly, a connected graph, a kind of roadmap, is constructed from the free configurations in the 3 dimensional Cspace, where the configurations are randomly sampled form the free Cspace. Thirdly, robot paths are optimally in order to minimize of the sum of joint angle movements. A path searching algorithm based on A is employed in determining the paths. Finally, the whole procedures for the CFPP method are illustrated with a 3 axis articulated robot. The main characteristics of the method are; 1) it deals with CFPP for an articulated robot in a 3-dimensional workcell, 2) it guarantees finding a collision free path, if such a path exists, 3) it provides distance optimization in terms of joint angle movements. The whole procedures are implemented by C on an IBM compatible 486 PC. GL (Graphic Library) on an IRIS CAD workstation is utilized to produce fine graphic outputs.

  • PDF

New Path-Setup Method for Optical Network-on-Chip

  • Gu, Huaxi;Gao, Kai;Wang, Zhengyu;Yang, Yintang;Yu, Xiaoshan
    • ETRI Journal
    • /
    • 제36권3호
    • /
    • pp.367-373
    • /
    • 2014
  • With high bandwidth, low interference, and low power consumption, optical network-on-chip (ONoC) has emerged as a highly efficient interconnection for the future generation of multicore system on chips. In this paper, we propose a new path-setup method for ONoC to mitigate contentions, such as packets, by recycling the setup packet halfway to the destination. A new, strictly non-blocking $6{\times}6$ optical router is designed to support the new method. The simulation results show the new path-setup method increases the throughput by 52.03%, 41.94%, and 36.47% under uniform, hotspot-I, and hotspot-II traffic patterns, respectively. The end-to-end delay performance is also improved.

형상 공간을 이용한 다관절 로보트의 충돌 회피 경로 계획 (Collision-Free Path Planning of Articulated Robot using Configuration Space)

  • 김정훈;최진섭;강희용;김동원;양성모
    • 한국자동차공학회논문집
    • /
    • 제2권6호
    • /
    • pp.57-65
    • /
    • 1994
  • A collision-free path planning algorithm between an articulated robot and polyhedral obstacles using configuration space is presented. In configuration space, a robot is treated as a point and obstacles are treated as grown forbidden regions. Hence path planning problem is transformed into moving a point from start position to goal position without entering forbidden regions. For mapping to 3D joint space, slice projection method is used for first revolute joint and inverse kinematics is used for second and third revolute joint considering kinematic characteristics of industrial robot. Also, three projected 2D joint spaces are used in search of collision-free path. A proper example is provided to illustrate the proposed algorithm.

  • PDF

절리 암반 사면의 계단 경로 파괴에 미치는 불연속면 간격/길이 비의 영향 (The Effect of the Discontinuity Spacing/Length Ratio on Step-Path Failure of Jointed Rock Slopes)

  • 윤운상
    • 지질공학
    • /
    • 제34권2호
    • /
    • pp.317-327
    • /
    • 2024
  • 대규모 암반 사면에서 비연속성의 절리계가 발달할 때, 계단상 활동면에 의한 사면 파괴가 발생할 수 있다. 계단상 활동면은 절리-절리 활동면 또는 절리-암교 활동면으로 구분할 수 있으며, 절리-암교 활동면에서 암교는 절리와 평행한 전단 저항과 절리에 수직인 인장 저항을 제공한다. 계단 경로 파괴는 활동 암괴의 하중에 의해 암교의 파괴가 발생하여 암교 양단의 두 절리가 연결되며 발생한다. 암교의 길이가 동일하다면 암석의 인장강도가 전단강도에 비해 낮으므로 절리에 수직으로 형성된 암교가 파괴에 취약하며, 불연속면 간격/길이의 비가 작을수록 계단 경로 파괴의 가능성이 커진다. 비연속성의 절리가 발달하는 암반 사면의 계단상 활동 파괴 위험에 대한 평가를 위해서는 체계적인 불연속면 조사 및 분석을 통해 계단 경로 파괴면을 구성하여 한계 평형 해석 또는 수치 해석 등의 안정성 평가를 수행하여야 한다.

자동화 굴삭기 최적경로 생성 알고리즘 개발 (Development of Optimal Path Planning for Automated Excavator)

  • 신진옥;박형주;이상학;홍대희
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.78-83
    • /
    • 2007
  • The paper focuses on the establishment of optimized bucket path planning and trajectory control designated for force-reflecting backhoe reacting to excavation environment, such as potential obstacles and ground characteristics. The developed path planning method can be used for precise bucket control, and more importantly for obstacle avoidance which is directly related to safety issues. The platform of this research was based on conventional papers regarding the kinematic model of excavator. Jacobian matrix was constructed to find optimal joint angles and rotation angles of bucket from position and orientation data of excavator. By applying Newton-Raphson method optimal joint angles and bucket orientation were derived simultaneously in the way of minimizing positional errors of excavator. The model presented in this paper was intended to function as a cornerstone to build complete and advanced path planning of excavator by implementing soil mechanics and further study of excavator dynamics together.

  • PDF