• Title/Summary/Keyword: Joint Microstructure

Search Result 208, Processing Time 0.021 seconds

A study on fracture toughness of welded joint and orientation in TMCP steel by th SP test (SP시험에 의한 TMCP강의 방향성 및 용접부의 파괴인성에 관한 연구)

  • 유효선;안병국;류대영;정세희
    • Journal of Welding and Joining
    • /
    • v.16 no.6
    • /
    • pp.35-43
    • /
    • 1998
  • In this paper, the fracture toughness evaluation of the various microstructures such as HAZ, F.L and W.M in weldment of TMCP steel which has the softening zone owing to high heat input welding was carried out by using of the small punch(SP) test. In addition, the fracture toughness with the specimen orientation of rolled TMCP steel was investigated by means of SP test and the crack opening displacement (COD) test and then was compared with that of conventional SM50YB steel. From the results of SP test for TMCP steel, it could be seen that the SP energy transition curves of three different orientation were shifted to higher temperature side in order of S, T and L. But the {TEX}$DBTT_{SP}${/TEX} of each orientation specimen did not show a lot of differences and were quite lower than those of conventional SM50YB steel. The mechanical properties of HAZ structure in weldment of TMCP steel such as hardness, SP energy at room temperature and -196$^{\circ}C$ and the upper shelf energy of SP energy transition curve were lower than those of base metal due to softening. The {TEX}$DBTT_{SP}${/TEX} of each microstructure in weldment of TMCP steel increased in order of HAZ, F.L and W.M against base metal, but all microstructures showed a quite lower {TEX}$DBTT_{SP}${/TEX} than those of SM50YB steel.

  • PDF

Evaluation of mechanical properties on friction stir lap jointed Al6061/HT590 alloys (겹치기 마찰교반접합 된 Al6061/HT590 합금의 기계적 특성 평가)

  • Kim, Eun-Hye;Lee, Kwang-Jin;Song, Kuk-Hyun
    • Journal of Welding and Joining
    • /
    • v.33 no.2
    • /
    • pp.8-13
    • /
    • 2015
  • This study was carried out to evaluate mechanical properties of the jointed Al6061/HT590 alloys by friction stir welding (FSW). FSW was conducted under the conditions with tool rotating speed of 500 RPM and traveling speed of 300 mm/min., where Ar gas was introduced to prevent the materials from corrosion during the welding process. Electron back-scattering diffraction (EBSD) was used to characterize microstructures such as grain size, misorientation angle and crystal orientation. Evolution of intermetallic compounds in Al6061 during the process were examined in terms of morphology, size and aspect ratio at three distinct zones Al base material, heat affected zone and stir zone, where transmission electron microscope (TEM) was used. It was revealed that FSW gave rise to refinement of grains as well as growth of intermetallic compounds in Al6061. The morphological changes of intermetallic compounds exerted an influence on mechanical properties, resulting in occurrence of fracture in the part of the base material instead of the jointed parts (heat affected zone and stir zone). This study systematically evaluated the microstructural evolutions during the FSW for joining Al6061 with HT590 and their effect on mechanical properties.

Effect of the welding speed on the characteristics of Nd:YAG laser welds for automotive application : 600MPa PH high strength steel (600MPa급 자동차용 석출경화형 고장력강판 Nd:YAG 레이저 용접부의 특성에 미치는 용접속도의 영향)

  • Han, Tae-Kyo;Jung, Byung-Hun;Kang, Chung-Yun
    • Laser Solutions
    • /
    • v.10 no.3
    • /
    • pp.25-32
    • /
    • 2007
  • The effect of welding speed on the weldability, microstructures, hardness, tensile property of Nd:YAG laser welding joint in 600MPa grade precipitation hardening high strength steel was investigated. A shielding gas was not used, and bead-on-plate welding was performed using various welding speeds at a power of 3.5kW. Porosity in the joints occurred at 1.8m/min, but were not observed over the welding speed of 2.1m/min. However, spatter occurred over the welding speed of 6.6m/min. The hardness was the highest at heat affected zone(HAZ) near fusion zone(FZ), and was decreased on approaching to the base metal. The maximum hardness increased with increasing welding speed. The microstructure of FZ was composed of coarse grain boundary ferrite and bainite(upper) but the HAZ near the FZ contained bainite(Lower) and fine ferrite at a low welding speed. With increasing welding speed, ferrite at the FZ and the HAZ became finely and upper binite changed to lower bainite. In a perpendicular tensile test to the weld line, all specimens were fractured at the base metal, and the tensile strength and the yield strength of joints was equal to those of raw material. Elongation was found to be lower than that of the raw material.

  • PDF

Transient Liquid Phase Bonding of Directionally Solidified Ni Base Superalloy, GTD-111(III) - The Effect of Homogenizing and Aging on the Microstructures and Mechanical Properties - (일방향응고 Ni기초내열합금 GTD-111의 천이액상확산접합(III) - 미세조직 및 기계적 성질에 미치는 균질화처리 및 시효처리의 영향 -)

  • 강정윤;황형철;김인배;김대업;우인수
    • Journal of Welding and Joining
    • /
    • v.21 no.3
    • /
    • pp.78-84
    • /
    • 2003
  • The changes of microstructure and hardness of TLP bonds of directionally solidified Ni base superalloy, GTD-111, with variation of homogenizing and aging treatment were investigated. The specimens were bonded at 1403K for 7.2ks using different insert metals such as MBF-50, MBF-80 and MBF-90 and they were homogenized at 1393K with various holding time. At center of bonded interlayer homogenized for hold time 30h, the contents of aluminum and titanium were approximately 90% and 95% of base metal, respectively. In this study, aging was performed at three different kinds : one step aging ; 1113K $\times$ 16h, two step aging ; 1113K $\times$ 10h ⇒ 1103K $\times$ 10h, three step aging ; 1113K $\times$ 10h ⇒ 1103K $\times$ 8h ⇒ 922K $\times$ 24h. ${\gamma}$' volume fraction and hardness of joints were high in the sequence of one step, two step and three step aging, whereas ${\gamma}$' volume fraction and hardness of joints obtained by three step aging treatment were higher than those of raw material. Tensile properties of joints bonded with MBF-80 and MBF-90, homogenized at 1393K for 30h and then three step aged became excellent than those of raw material, however, joint bonded with MBF-50 was poor.

Effect of Bonding Condition on the Tensile Properties of Diffusion Bonded Haynes230 (고상확산접합된 Haynes230의 인장성질에 미치는 접합조건의 영향)

  • Kang, Gil-Mo;Jeon, Ae-Jeong;Kim, Hong-Kyu;Hong, Sung-Suk;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.31 no.3
    • /
    • pp.76-83
    • /
    • 2013
  • This study investigated the effect of bonding temperature and holding time on microstructures and mechanical properties of diffusion bonded joint of Haynes230. The diffusion bonds were performed at the temperature of 950, 1050, and $1150^{\circ}C$ for holding times of 30, 60, 120 and 240 minutes at a pressure of 4MPa under high vacuum condition. The amount of non-bonded area and void observed in the bonded interface decreased with increasing bonding temperature and holding time. Cr-rich precipitates at the linear interface region restrained grain migration at $950^{\circ}C$ and $1050^{\circ}C$. However, the grain migration was observed in spite of short holding time due to the dissolution of precipitates to base metal in the interface region at $1150^{\circ}C$. Three types of the fracture surface were observed after tensile test. The region where the coalesce and migration of grain occurred much showed high fracture load because of base metal fracture whereas the region where those did less due to the precipitates demonstrated low fracture load because of interface fracture. The expected fracture load could be derived with the value of fracture area of base metal ($A_{BF}$) and interface ($A_{IF}$), $Load=201A_{BF}+153A_{IF}$. Based on this equation, strength of base metal and interface fracture were calculated as 201MPa and 153MPa, respectively.

Characteristics of Shear Strength for joined SiC-SiC Ceramics (SiC세라믹스 동종재 접합재의 전단강도 특성 평가)

  • Yoon, Han Ki;Jung, Hun Chea;Hinoki, T.;Kohyama, A.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.5
    • /
    • pp.483-487
    • /
    • 2014
  • In this study, joining methods with SiC powder as the joining adhesives were studied in order to avoid the residual stresses coming from CTE (Coefficient of Thermal Expansion) mismatch between substrate and joining layer. The shear strength and microstructure of joined material between SiC substrates are investigated. The commercial Hexoloy-SA (Saint-Gobain Ceramics, USA) used in this work as substrate material. The fine ${\beta}$-SiC nano-powder which the average particle size is below 30 nm, $Al_2O_3$, $Y_2O_3$, and $SiO_2$ were used as joining adhesives. The specimens were joined with 20MPa and $1400-1900^{\circ}C$ by hot pressing in argon atmosphere. The shear test was performed to investigate the bonding strength. The cross-section of the joint was characterized by using an optical microscope and scanning electron microscopy (SEM).

ANALYSIS OF EFFECTIVE NUGGET SIZE BY INFRARED THERMOGRAPHY IN SPOT WELDMENT

  • Song, J.H.;Noh, H.G.;Akira, S.M.;Yu, H.S.;Kang, H.Y.;Yang, S.M.
    • International Journal of Automotive Technology
    • /
    • v.5 no.1
    • /
    • pp.55-59
    • /
    • 2004
  • Spot welding is a very important and useful technology in fabrication of thin sheet structures such as the parts in an automobile. However, because the fatigue strength of the spot welding point is considerably lower than that of the base metal due to stress concentration at the nugget edge, the nugget size must be estimated to evaluate a reasonable fatigue strength at a spot welded lap joint. So far, many investigators have experimentally studied the estimation of fatigue strengths of various spot weldments by using a destructive method. However, these destructive methods poses problems so testing of weldments by these methods are difficult. Furthermore, these methods cannot be applied to a real product, and are time and cost consuming, as well. Therefore, there has been a strong, continual demand for the development of a nondestructive method for estimating nugget size. In this study, the effective nugget size in spot weldments have been analyzed by using thermoelastic stress analysis adopting infrared thermography. Using the results of the temperature distribution obtained by analysis of the infared stress due to adiabatic heat expansion under sinusoidal wave stresses, the effective nugget size in spot welded specimens were estimated. To examine the evaluated effective nugget size in spot weldments, it was compared with the results of microstructure observation from a 5% Nital etching test.

Tensile and impact toughness properties of various regions of dissimilar joints of nuclear grade steels

  • Karthick, K.;Malarvizhi, S.;Balasubramanian, V.;Krishnan, S.A.;Sasikala, G.;Albert, Shaju K.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.116-125
    • /
    • 2018
  • Modified 9Cr-1Mo ferritic steel is a preferred material for steam generators in nuclear power plants for their creep strength and good corrosion resistance. Austenitic stainless steels, such as type 316LN, are used in the high temperature segments such as reactor pressure vessels and primary piping systems. So, the dissimilar joints between these materials are inevitable. In this investigation, dissimilar joints were fabricated by the Shielded Metal Arc Welding (SMAW) process with Inconel 82/182 filler metals. The notch tensile properties and Charpy V-notch impact toughness properties of various regions of dissimilar metal weld joints (DMWJs) were evaluated as per the standards. The microhardness distribution across the DMWJs was recorded. Microstructural features of different regions were characterized by optical and scanning electron microscopy. Inhomogeneous notch tensile properties were observed across the DMWJs. Impact toughness values of various regions of the DMWJs were slightly higher than the prescribed value. Formation of a carbon-enriched hard zone at the interface between the ferritic steel and the buttering material enhanced the notch tensile properties of the heat-affected-zone (HAZ) of P91. The complex microstructure developed at the interfaces of the DMWJs was the reason for inhomogeneous mechanical properties.

A Study to Improve Weld Strength of Al 6k21-T4 Alloy by using Laser Weaving Method (레이저 위빙을 이용한 Al 6k21-T4 합금의 용접 강도 향상)

  • Kim, Byung-Hun;Kang, Nam-Hyun;Park, Yong-Ho;Ahn, Young-Nam;Kim, Cheol-Hee;Kim, Jung-Han
    • Journal of Welding and Joining
    • /
    • v.27 no.4
    • /
    • pp.49-53
    • /
    • 2009
  • For Al 6k21-T4 alloy, linear laser welding produced the lower shear-tensile strength than the base metal. This study improved the shear-tensile strength by using the weaving laser at the optimized welding condition, i.e., 2mm weaving width and 25Hz frequency. The large weaving width increased the weld width, therefore improving the joint strength. For the specimen of low strength, the porosity was distributed continuously along the intersection between the plates and fusion line. However, for the optimized welding condition, large oval-shaped porosities were located only in the advancing track of the concave part. Regardless of the welding condition, solidification cracking was initiated at the intersection and propagated through small porosities in the weld part. furthermore, the concave part had more significant porosity in the weld and HAZ, respectively than the convex part. The continuity of porosities played a key role to determine the strength. And, the weaving width was an important parameter to control the strength.

Characteristics of Microwelded BLU CCFL Electrode in Terms of Glass Beading Heat Treatment Temperature (미세 용접된 BLU CCFL 전극의 유리비딩 열처리 온도에 따른 접합부 특성)

  • Kim, Gwang-Soo;Kim, Sang-Duck;Kwon, Hyuk-Dong
    • Journal of Welding and Joining
    • /
    • v.27 no.4
    • /
    • pp.73-78
    • /
    • 2009
  • Characterization of the microweld CCFL electrode for the TFT-LCD backlight unit was carried out in terms of the glass beading heat treatment conditions. We evaluate the weld zone and parent metal of the microweld CCFL electrodes that were exposed to simulated glass beading heat treatment. The CCFL electrode was composed of the cup made with pure Ni, the pin made with pure Mo and the lead wire made with Ni-Mn alloy. Each part of the electrode was assembled together by micro spot welding process and then the assembled electrodes were exposed to simulated glass beading temperatures of $700^{\circ}C,\;750^{\circ}C$ and $800^{\circ}C$. The microstructures of the microweld CCFL electrode were observed by using optical microscope, scanning electron microscope and EDS. Micro-tensile and microhardness test were also carried out. The results indicated that the grain coarsening in the HAZs(heat affected zones) for both the cup-pin weld and pin-lead wire were exhibited and the grain coarsening of the HAZ for the cup and the lead wire was more obvious than the HAZ of the pin. The micro-tensile test revealed that the fracture occurred at the cup-pin weld zone for all test conditions. The fracture surface could be classified into two parts such as pin portion and cup portion including weld nugget. The failure was seemed to be initiated from the boundary between nugget and pin through the weld joint. The result of the microhardness measurement exhibited that the relatively low hardness value, about 105HV was recorded at the HAZ of the cup. This value was about 50% less than that of the original value of the cup. The reduction of the microhardness was considered as the cause of the grain coarsening due to welding process. It was also appeared that there was no change in electric resistance for the standard electrodes and heat treated electrodes.