• Title/Summary/Keyword: Joint Kinematics

Search Result 428, Processing Time 0.027 seconds

Design of a Modular Type Joint Mechanism for a Service Robot (서비스 로봇을 위한 모듈형 관절 메커니즘 설계)

  • Lee, Hee-Don;Han, Chang-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.11
    • /
    • pp.1272-1278
    • /
    • 2011
  • Mechanisms of the robot system should be developed according to the task. In this study, we propose improving adaptability of the robot mechanism with the modularized joint mechanism. Adaptability is the measure of the system ability to cope with change or uncertainty. Modular type joint has been widely used in development of various robots including reconfigurable robots. To build robotic systems more flexibly and quickly with low costs of manufacturing and maintenance, we have designed a modular type joint with one degree of freedom for general purpose. This module is designed to be compact, light-weight and self-controlled. In this design, we consider the kinematics and dynamics properties of the modular type joint.

The Kinematics Analysis of Round-off at end of Beam-salto Backward Stretched with Step-out to Cross on Balance Beam (평균대 도움 짚고 몸 펴 뒤 공중 돌아 오르기 동작에 대한 운동학적 분석)

  • Kim, Young-Ran
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.3
    • /
    • pp.99-116
    • /
    • 2003
  • The purpose of this study was to kinematics factors on during round-off at end of beam-salto backward stretched with step-out to cross on balance beam. Four elite female gymnastics players participated as subject of this study. The methods of this study was analyzed using three dimentional analysis. The results and conclusion of this paper is obtained as follows ; 1. The phase of time was the most short time in board touch down phase and board take-off phase. Also, it was shown a more long time in total time compared to previous study. 2. The horizontal displacement of each phase was shown the most high levels in balance beam landing. The vertical displacement was display a non-linearity increase in board take-of phase, and it was shown the most high levels in vertical displacement during landing of balance beam. 3. The horizontal velocity of each phase was shown the most high levels in board touch down, and it was display a gradually decreased levels because flight during board take-of. The resultant velocity of CG on each phase was shown the most high levels in board touch down and board take-off. 4. The angle of hip joint was shown the most high levels as performed a motion in extension state during board take-off, and the angle of knee joint was display a increased levels because of flight cause body extension in board take-off. Also the angle of ankle joint was shown a increasing levels during board take-off. Considering to this results, it is suggest that the change of kinematics factors in board touch down and board take-off is key role on the effective board control.

A study on design, experiment control of the waterproof robot arm (방수형 로봇팔의 설계, 실험 및 제어 연구)

  • Ha, Jihoon;Joo, Youngdo;Kim, Donghee;Kim, Joon-Young;Choi, Hyeung-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.648-657
    • /
    • 2014
  • This paper is about the study on a newly developed small waterproofed 4-axis robot arm and the analysis of its kinematics and dynamics. The structure of robot arm is designed to have Pitch-Pitch-Pitch-Yaw joint motion for inspection using a camera on itself and the joint actuator driving capacity are selected and the joint actuators are designed and test for 10m waterproofness. The closed-form solution for the robot arm is derived through the forward and inverse kinematics analysis. Also, the dynamics model equation including the damping force due to the mechanical seal for waterproofness is derived using Newton-Euler method. Using derived dynamics equation, a sliding mode controller is designed to track the desired path of the developed robot arm, and its performance is verified through a simulation.

Gait analysis of Healthy Adults with External Loads on Trunk (체간에 무게 부하를 적용한 정상 성인의 보행 분석)

  • Chang, Jong-Sung;Choi, Jin-Ho;Lee, Mi-Young;Kim, Meuung-Kwon
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.7 no.1
    • /
    • pp.69-75
    • /
    • 2012
  • Purpose : The study was designed to investigate analysis of kinematics of lower extremity in healthy adults during walking with external loads on trunk. Methods : Fifteen healthy adults were recruited and The subjects provided written and informed consent prior to participation. They walked on a ten-meter walkway at a self-selected pace with loads of 0, 5, 10, and 15kg. They completed three trials in each condition and kinematic changes were measured. A three-dimensional motion analysis system was used to analyze lower extremity kinematic data. The data collected by each way of walking task and analyzed by One-way ANOVA. Results : There were significant differences in hip and knee joint on saggittal plane at initial contact and preswing, and significant differences in ankle joint on transverse plane at preswing. Conclusion : These findings revealed that increased external loads were changed joint angles and influenced postural strategies because of kinematic mechanism and future studies is recommended to find out prevention from damage of activities of daily living.

Arthro Kinematic Approach (관절 운동학적 치료접근법)

  • Lim, Sung-Su;Oh, Seung-Kil;Kim, Ju-Sang
    • Journal of Korean Physical Therapy Science
    • /
    • v.2 no.2
    • /
    • pp.545-562
    • /
    • 1995
  • The purpose of this paper was to provide the understanding of theory, technique, clinical use about arthro kinematic approach. Difference between AKA and Joint mobilization was seen through Table 1, and the relation between AKA and Athro kinematics was seen through Table 2. Examples of AKA techniques were as follow ; 1. Cervical intervertebral joint, left $C_{2/3}$ 2. Thoracic intervertebral joint, left $T_{5/6}$ 3. Sacroiliac joint, left (1) Nutation-upward gliding (2) Nutation-downward gliding (3) Superior distraction (4) Inferior distraction 4. 1st. costovertebral joint, left 5. 2nd. sternocostal joint, left 6. AKA-streching exercise 7. AKA - resistive exercise Symptoms, diagnosis, treatment were discribed for clinical use, and they were expected further that clinical application of AKA might clarify many of joint dysfunction.

  • PDF

Development of miniaturized humanoid with new joint mechanism (새로운 관절 기구를 갖는 소형 휴머노이드에 관한 연구)

  • Gang, Taig-Gi;Park, Seong-Hoon;Yi, SooYeong
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2420-2422
    • /
    • 2004
  • In this paper, we developed a miniaturized humanoid having the new joint mechanism. In general, the high torque actuator and the joint mechanism having three coincided axes are important in development of the miniaturized humanoid. By using the swash plate, which is generally used in three axes rotor mechanism, we developed a new three-coincided-axes joint mechanism and a miniaturized humanoid having the joint mechanism at its hip and ankle joints. Since the joint mechanism has a pair of parallel drive motors for each axis, the driving torque of the joint mechanism is very high. Futhermore, thanks to the three-coincided-axes mechanism, the solution of the inverse kinematics is simple and computationally efficient, and the resulting walking behavior of the humanoid becomes natural.

  • PDF

Mobility in the Contact Joint of a Mechanism (접촉 조인트에서의 운동자유도)

  • Lee, Jang-Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.4 s.193
    • /
    • pp.109-114
    • /
    • 2007
  • The mobility (degree of freedom) of mechanisms can be regarded as independent coordinate to define its position. This concept is essential for kinematics, and for designing mechanisms in the practical point of view. Gruebler's equation has been applied to estimate the mobility using number of links and joints of a mechanism. In practical case, there are many types of mechanisms, which transfer motion by direct contact between two links. However, no exact kinematic definition has existed for the joint that the contact takes place in a mechanism. In this paper, a new concept of contact joint is defined and modified Gruebler's equation is suggested to calculate mobility of a mechanism with the joint. This concept would be useful in mechanism design because it will be possible to manage many contact mechanisms with kinematic exactness.

Fuzzy Hint Acquisition for the Collision Avoidance Solution of Redundant Manipulators Using Neural Network

  • Assal Samy F. M.;Watanabe Keigo;Izumi Kiyotaka
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.1
    • /
    • pp.17-29
    • /
    • 2006
  • A novel inverse kinematics solution based on the back propagation neural network (NN) for redundant manipulators is developed for online obstacles avoidance. A laser transducer at the end-effctor is used for online planning the trajectory. Since the inverse kinematics in the present problem has infinite number of joint angle vectors, a fuzzy reasoning system is designed to generate an approximate value for that vector. This vector is fed into the NN as a hint input vector rather than as a training vector to guide the output of the NN. Simulations are implemented on both three- and four-link redundant planar manipulators to show the effectiveness of the proposed position control system.

Inverse Kinematics of a Serial Manipulator : Redundancy and a Closed-rom Solution by Exploting Geomertiric Constraints (원료불출기의 역기구학 : 여유자유도와 구속조건을 이용한 닫힌 형태의 해)

  • 홍금식;김영민;최진태;신기태;염영일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.661-665
    • /
    • 1996
  • An inverse kinemetics problem of a reclaimer which digs and transports ironstones or coals in the raw yard is investigated. Because of the special features of the reclaimer of which scooping buckets are attached around the rotating drum at the end of boom, kinematic redundancy occurs in determining the joint varialbes For a given reclaiming point in space the forward kinematics yields 3 equations, however the number of involved variables in the equations are four. A plane equation approximating the surface near a reclaiming point is obtained by considering 8 adjacent points surrounding the reclaiming point. One extra equation to overcome redunduncyis further obtained from the condition that the normal vector at a reclaiming point is perpendicular to the plane. An approximate solution for a simplified problem is first discussed, Numerical solution for the oritinal nonlinear porblem with a constraint equation is also investigated. Finally a closed form solution which is not exact but sufficiently close enough is proposed by exploiting geometric constraint.

  • PDF

Development of a New Buffing Robot Manipulator for Shoes (새로운 신발 버핑로봇 매니퓰레이터 개발)

  • Hwang Gyu-Deuk;Cho Sung-Duk;Choi Hyeung-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.7 s.184
    • /
    • pp.76-83
    • /
    • 2006
  • In this paper, an analysis on a new robot manipulator developed for the side buffing of the shoes is presented. The robot manipulator is composed of five degrees of freedom. An analysis on the forward and inverse kinematics was performed. Through the analysis, an analytic solution was derived for the joint angles corresponding to the position and orientation of the tool in the Cartesian coordinates. The hardware system of the robot composed of the control system, input/output interface system, and related electronic system was developed. The communication system was also developed to interact the robot with the related surrounding systems. A graphic user interface(GUI) program including the forward/inverse kinematics, control algorithm, and communication program was developed using visual C++ language.