• Title/Summary/Keyword: Joint Controller

Search Result 313, Processing Time 0.023 seconds

Mechanical Reliability Evaluation on Solder Joint of CCB for Compact Advanced Satellite (Sherlock을 활용한 차세대 중형위성용 CCB 솔더 접합부의 기계적 신뢰성 평가)

  • Jeon, Young-Hyeon;Kim, Hyun-Soo;Lim, In-Ok;Kim, Youngsun;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.6
    • /
    • pp.498-507
    • /
    • 2017
  • Electronic equipments comprised of high density components with various packaging types have been recently applied to a satellite. Therefore, to guarantee high reliability of electrical equipment, a design approach, which can reduce the development period and cost through an early diagnosis in potential risks of failure, should be established. In the previous research, the reliability assesment of the electronic equipments have based on Steinberg's fatigue failure theory. However, this theory was not enough for further investigation of life prediction and reliability of the electronic equipments comprised of various sizes and packaging types due to its theoretical limitations and analysis results sensitivity with regard to different modeling technic. In that case, if detailed finite element model is established, aforementioned problems can be readily solved. However, this approach might arise disadvantage of spending much time. In this paper, to establish strategy for high reliability design of electronic equipment, we performed mechanical reliability evaluation of CCB (Camera Controller Box) at qualification level based on the approach using Sherlock unlike design techniques applied to existing business.

Joint Rate Control Scheme for Terrestrial Stereoscopic 3DTV Broadcast (스테레오스코픽 3차원 지상파 방송을 위한 합동 비트율 제어 연구)

  • Chang, Yongjun;Kim, Munchurl
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.14-17
    • /
    • 2010
  • Following the proliferation of three-dimensional video contents and displays, many terrestrial broadcasting companies prepare for starting stereoscopic 3DTV service. In terrestrial stereoscopic broadcast, it is a difficult task to code and transmit two video sequences while sustaining as high quality as 2DTV broadcast attains due to the limited bandwidth defined by the existing digital TV standards such as ATSC. Thus, a terrestrial 3DTV broadcasting system with heterogeneous video coding systems is considered for terrestrial 3DTV broadcast where the left image and right images are based on MPEG-2 and H.264/AVC, respectively, in order to achieve both high quality broadcasting service and compatibility for the existing 2DTV viewers. Without significant change in the current terrestrial broadcasting systems, we propose a joint rate control scheme for stereoscopic 3DTV service. The proposed joint rate control scheme applies to the MPEG-2 encoder a quadratic rate-quantization model which is adopted in the H.264/AVC. Then the controller is designed for the sum of two bit streams to meet the bandwidth requirement of broadcasting standards while the sum of image distortions is minimized by adjusting quantization parameter computed from the proposed optimization scheme. Besides, we also consider a condition on quality difference between the left and right images in the optimization. Experimental results demonstrate that the proposed bit rate control scheme outperforms the rate control method where each video coding standard uses its own bit rate control algorithm in terms of minimizing the mean image distortion as well as the mean value and the variation of absolute image quality differences.

  • PDF

Study on Interaction of Planar Redundant Manipulator with Environment based on Intelligent Control (지능제어를 이용한 평면 여자유도 매니퓰레이터와 환경과의 상호작용에 관한 연구)

  • Yoo, Bong-Soo;Kim, Sin-Ho;Joh, Joong-Seon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.3
    • /
    • pp.388-397
    • /
    • 2009
  • There are many tasks which require robotic manipulators interaction with environment. It consists of three control problems, i.e., position control, impact control and force control. The position control means the way of reaching to the environment. The moment of touching to the environment yields the impact control problem and the force control is to maintain the desired force trajectory after the impact with the environment. These three control problems occur in sequence, so each control algorithm can be developed independently. Especially for redundant manipulators, each of these three control problems has been important independent research topic. For example, joint torque minimization and impulse minimization are typical techniques for such control problems. The three control problems are considered as a single task in this paper. The position control strategy is developed to improve the performance of the task, i.e., minimization of the individual joint torques and impulse. Therefore, initial conditions of the impact control problem are optimized at the previous position control algorithm. Such a control strategy yields improved result of the impact control. Similarly, the initial conditions for the force control problem are indirectly optimized by the previous position control and impact control strategies. The force control algorithm uses the individual joint torque minimization concept. It also minimizes the force disturbances. The simulation results show the proposed control strategy works well.

Modeling and Compensatory Control of Thermal Error for the Machine Orgin of Machine Tools (공작기계 원점 열변형오차의 모델링 및 보상제어)

  • 정성종
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.4
    • /
    • pp.19-28
    • /
    • 1999
  • In order to control thermal deformation of the machine origin of machine tools a empirical model and a compensation system have been developed, Prior to empirical modeling the volumetric error considering shape errors and joint errors of slides is formulated through the homogeneous transformation matrix (HTM) and kinematic chain. Simulation results of the HTM method show that the thermal error of the machine origin is more critical than position-dependent errors. In order to make a stable and effective software error compensation system the GMDH (Group Method of Data Handling) models are constructed to estimate the thermal deformation of the machine origin by measuring deformation data and temperature data. A test bar and gap sensors are used to measure the deformation data. In order to compensate the estimated error the work origin shift method is developed by implementing a digital I/O interface board between a CNC controller and an IBM PC. The method shifts the work origin as much as the amounts which are calculated by the pre-established thermal error model. The experiment results for a vertical machining center show that the thermal deformation of the machine origin is reduced within $\pm$5$mu extrm{m}$.

  • PDF

A Experiment Study of Torch Distance on Automated Tandem GMA Welding System (탄뎀 가스메탈아크 용접의 토치 극간거리에 관한 실험적 연구)

  • Lee, Ji-Hye;Kim, Ill-Soo;Jung, Seong-Myeong;Lee, Jong-Pyo;Kim, Young-Su;Park, Min-Ho
    • Journal of Welding and Joining
    • /
    • v.30 no.6
    • /
    • pp.49-55
    • /
    • 2012
  • The tandem welding process is one of the most efficient welding processes widely used in material joining technique such as manufacturing of strong and durable structures. It facilitates high rate of joint filling with little increase in the overall rate of heat input due to the simultaneous deposition from two electrode wires. The two electrodes in tandem welding process helps in high-efficiency and high productive of welding process. In this study a automated tandem welding system is developed to determine the correlation between cathode and anode and compared with current ratio of the two electrode torch. Three different inter-electrode distances were chosen, 25mm, 35mm and 45mm to perform the experiment with three different current ratio. From the experiment results, the current ratio between two torch has a large impact on width, height and depth of penetration. In addition, a stable bead geometry is obtained when inter-electrode distance is 35mm.

Swing Trajectory Optimization of Legged Robot by Real-Time Nonlinear Programming (실시간 비선형 최적화 알고리즘을 이용한 족형 로봇의 Swing 궤적 최적화 방법)

  • Park, Kyeongduk;Choi, Jungsu;Kong, Kyoungchul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.12
    • /
    • pp.1193-1200
    • /
    • 2015
  • An effective swing trajectory of legged robots is different from the swing trajectories of humans or animals because of different dynamic characteristics. Therefore, it is important to find optimal parameters through experiments. This paper proposes a real-time nonlinear programming (RTNLP) method for optimization of the swing trajectory of the legged robot. For parameterization of the trajectory, the swing trajectory is approximated to parabolic and cubic spline curves. The robotic leg is position-controlled by a high-gain controller, and a cost function is selected such that the sum of the motor inputs and tracking errors at each joint is minimized. A simplified dynamic model is used to simulate the dynamics of a robotic leg. The purpose of the simulation is to find the feasibility of the optimization problem before an actual experiment occurs. Finally, an experiment is carried out on a real robotic leg with two degrees of freedom. For both the simulation and the experiment, the design variables converge to a feasible point, reducing the cost value.

A Study on Real Time Working Path Control of Vertical Type Robot System for the Forging and Casting Process Automation

  • Lim, O-Deuk;Kim, Min-Seong;Jung, Yang-Geun;Kang, Jung-Suk;Won, Jong-Bum;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.3
    • /
    • pp.245-256
    • /
    • 2017
  • In this study, we describe a new approach to real-time implementation of working path control for the forging and casting manufacturing process by vertical type articulated robot system. The proposed control scheme is simple in structure, fast in computation, and useful for real-time control of factory automation based on robot system. Moreover, this scheme does not require any accurate parameter information, nor values of the uncertain parameters and payload variations. Reliability of the proposed controller is proved by simulation and experimental results for robot manipulator consisting of arm with six degrees of freedom under the variation of payloads and tracking trajectories in Cartesian space and joint space. The vertical type articulated robot manipulator with six axes made in SMEC Co., Ltd. has been used for real-time implementation test to illustrate the enhanced working path control performance for unmanned automation of the forging and casting manufacturing process.

Bending Motion Control of Electroactive Polymer Actuator-Sensor Hybrid Structure for Finger Exoskeleton (손가락 외골격용 전기활성 고분자 구동체-센서 하이브리드 구조체의 굽힘 동작 제어)

  • Han, Dong Gyun;Song, Dae Seok;Jho, Jae Young;Kim, Dong Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.10
    • /
    • pp.865-871
    • /
    • 2015
  • This study was conducted in order to develop a finger exoskeleton system using ionic polymer metal composites (IPMCs) as the actuator and sensor in a hybrid structure. To use the IPMC as an actuator producing large force, a first order transfer function was obtained using results from a block force for DC excitation that applied to two IPMCs of 20mm-width, 50mm-length, and 2.4mm thickness together. After which the validation of 200gf control with anti-windup PI controller was confirmed. A 5mm-width, 50mm-length, 0.6mm-thickness of IPMC was also modeled as a sensor for tip displacement. As a result, the IPMC sensor could been utilized as a trigger role for the actuator. Finally, an IPMC sensor and actuator were installed on the joint of a single DOF exoskeleton in the hybrid structure, and test for the control of 40gf of block force and predefined sequence of motion was performed.

Development of the Hybrid Type Robot Using a Pneumatic Actuator For Physical Therapy Of Ankylosis (관절 경직 환자의 물리 치료를 위한 공압 구동형 하이브리드 로봇 개발)

  • 최현석;최철우;한창수;한정수
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.127-132
    • /
    • 2003
  • In this paper. the pneumatic service robot with a hybrid type is developed. A pneumatic has the advantages of good compliance , high Payload-to-weight and payload-to-volume ratios. high speed and force capabilities. Using pneumatic actuators. which have low stiffness. the service robot can guarantee safety. By suggesting a new serial-parallel hybrid type for the service robot which separates into Positioning motion and orienting motion, we can achieve large workspace and high strength-to-moving-weight ratio at the same time. A sliding mode controller can be designed for tracking the desired output using the Lyapunov stability theory and structural properties of pneumatic servo systems. Through many experiments of circular trajectory. the Pneumatic service robot is evaluated and verified.

Optimal Trajectory Planning for Cooperative Control of Dual-arm Robot (양팔 로봇의 협조제어를 위한 최적 경로 설계)

  • Park, Chi-Sung;Ha, Hyun-Uk;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.9
    • /
    • pp.891-897
    • /
    • 2010
  • This paper proposes a cooperative control algorithm for a dual-arms robot which is carrying an object to the desired location. When the dual-arms robot is carrying an object from the start to the goal point, the optimal path in terms of safety, energy, and time needs to be selected among the numerous possible paths. In order to quantify the carrying efficiency of dual-arms, DAMM (Dual Arm Manipulability Measure) has been defined and applied for the decision of the optimal path. The DAMM is defined as the intersection of the manipulability ellipsoids of the dual-arms, while the manipulability measure indicates a relationship between the joint velocity and the Cartesian velocity for each arm. The cost function for achieving the optimal path is defined as the summation of the distance to the goal and inverse of this DAMM, which aims to generate the efficient motion to the goal. It is confirmed that the optimal path planning keeps higher manipulability through the short distance path by using computer simulation. To show the effectiveness of this cooperative control algorithm experimentally, a 5-DOF dual-arm robot with distributed controllers for synchronization control has been developed and used for the experiments.