• Title/Summary/Keyword: Joint Control

Search Result 2,708, Processing Time 0.028 seconds

Redundancy Resolution by Minimization of Joint Disturbance Torque for Independent Joint Controlled Kinematically Redundant Manipulators

  • Park, Myoung-Hwan
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.1
    • /
    • pp.56-61
    • /
    • 2000
  • Majority of industrial robots are controlled by a simple independent joint control of joint actuators rather than complex controllers based on the nonlinear dynamic model of the robot manipulator. In this independent joint control scheme, the performance of actuator control is influenced significantly by the joint disturbance torques including gravity, Coriolis and centrifugal torques, which result in the trajectory tracking error in the joint control system. The control performance of a redundant manipulator under independent joint control can be improved by minimizing this joint disturbance torque in resolving the kinematic redundancy. A 3 DOF planar robot is studied as an example, and the dynamic programming method is used to find the globally optimal joint trajectory that minimize the joint disturbance torque over the entire motion. The resulting solution is compared with the solution obtained by the conventional joint torque minimization, and it is shown that joint disturbance can be reduced using the kinematic redundancy.

  • PDF

Robust Fault-Tolerant Control for a Robot System Anticipating Joint Failures in the Presence of Uncertainties (불확실성의 존재에서 관절 고장을 가지는 로봇 시스템에 대한 강인한 내고장 제어)

  • 신진호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.10
    • /
    • pp.755-767
    • /
    • 2003
  • This paper proposes a robust fault-tolerant control framework for robot manipulators to maintain the required performance and achieve task completion in the presence of both partial joint failures and complete joint failures and uncertainties. In the case of a complete joint failure or free-swinging joint failure causing the complete loss of torque on a joint, a fully-actuated robot manipulator can be viewed as an underactuated robot manipulator. To detect and identify a complete actuator failure, an on-line fault detection operation is also presented. The proposed fault-tolerant control system contains a robust adaptive controller overcoming partial joint failures based on robust adaptive control methodology, an on-line fault detector detecting and identifying complete joint failures, and a robust adaptive controller overcoming partial and complete joint failures, and so eventually it can face and overcome joint failures and uncertainties. Numerical simulations are conducted to validate the proposed robust fault-tolerant control scheme.

Joint disturbance torque analysis for independent joint controlled robots and its application in optimal path placement (독립관절제어 로봇의 관절외란해석과 최적경로위치 문제의 해법)

  • Choi, Myung-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.3
    • /
    • pp.342-348
    • /
    • 1998
  • A majority of industrial robots are controlled by a simple joint servo control of joint actuators. In this type of control, the performance of control is greatly influenced by the joint interaction torques including Coriolis and centrifugal forces, which act as disturbance torques to the control system. As the speed of the robot increases, the effect of this disturbance torque increases, and hence makes the high speed - high precision control more difficult to achieve. In this paper, the joint disturbance torque of robots is analyzed. The joint disturbance torque is defined using the coefficients of dynamic equation of motion, and for the case of a 2 DOF planar robot, the conditions for the minimum and maximum joint disturbance torques are identified, and the effect of link parameters and joint variables on the joint disturbance torque are examined. Then, a solution to the optimal path placement problem is propose that minimizes the joint disturbance torque during a straight line motion. The proposed method is illustrated using computer simulation. The proposed solution method can be applied to a class of robots that are controlled by independent joint servo control, which includes the vast majority of industrial robots.

  • PDF

Joint disturbance torque analysis for robots and its application in straight line path placement (로봇의 관절외란해석을 이용한 직선궤적 위치결정)

  • ;Choi, Myuoung Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1824-1827
    • /
    • 1997
  • Majority of industrial robots are controlled by a simple joint servo control of joint actuators. In this type of control, the performance of control is influenced greatly by the joint interaction torques including Coriolis and centrifugal forces, which act as disturbance torques to the control system. As the speed of the robot increases, the effect of this disturbance torque increases, and makes the high speed-high precision control more difficult to achieve. In this paper, the joint disturbance torque of robots is analyzed. The joint disturbance torque is defined using the coefficients of dynamic equation of motion, and for the case of a 2DOF planar robot, the conditions for the maximum joint disturbance torques are identified, and the effect of link parameters and joint variables on the joint disturbance torque are examined. Then, a solutioin to the optimal path placement problem is proposed that minimizes the joint disturbance torque are examined. then, a solution to the optimal path placement problem is proposed that minimizes the joint disturbance torque during a straight line motion. the proposed method is illustrated using computer simulation. the proposed solution method cna be applied to the class of robots that are controlled by independent joint sevo control, which includes the vast majority of industrial robots. By minimizing the joint disturbacne torque during the motion, the simple joint servo controlled robot can move with improved path tracking accuracy at high speed.

  • PDF

Adaptive control of flexible joint robot manipulators (유연성 관절 로봇 매니퓰레이터 적응 제어)

  • 신진호;이주장
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.260-265
    • /
    • 1992
  • This paper presents an adaptive control scheme for flexible joint robot manipulators. This control scheme is based on the Lyapunov direct method with the arm energy-based Lyapunov function. The proposed adaptive control scheme uses only the position and velocity feedback of link and motor shaft. The adaptive control system of flexible joint robots is asymptotically stable regardless of the joint flexibility value. Therefore, the assumption of weak joint ealsticity is not needed. Also, joint flexibility value is unknown. Simulation results are presented to show the feasibility of the proposed adaptive control scheme.

  • PDF

Dexterity modulation of parallel manipulators using joint freezing/releasing and joint unactuation/actuation

  • Youm, Sungkwan;So, Jinho;Kim, Sungbok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.764-767
    • /
    • 1997
  • This paper presents the modulation of the dexterity of a parallel manipulator using joint freezing/releasing and joint unactuation/actuation. In this paper, individual limbs have redundant number of joints, and each joint can be frozen/released and unactuated/actuated, as needed. First, given a task, the restrictions on joint freezing and joint unactuation of a parallel manipulator are derived. Next, with/without joint freezing and/or joint unactuation, the kinematics of a parallel manipulator is formulated, based on which the manipulability ellipsoid is defined. The effects of joint freezing and joint unactuation on the manipulability are analyzed and compared. Finally, simulation results for a planar parallel manipulator are given. Joint mechanisms, such as joint freezing and joint unactuation, are rather simple to adopt into a parallel manipulator, but is quite effective to improve the task adaptability of the system.

  • PDF

A V-Shaped Lyapunov Function Approach to Model-Based Control of Flexible-Joint Robots

  • Lee, Ho-Hoon;Park, Seung-Gap
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.11
    • /
    • pp.1225-1231
    • /
    • 2000
  • This paper proposes a V-shaped Lyapunov function approach for the model-based control of flexible-joint robots, in which a new model-based nonlinear control scheme is designed based on a V-shaped Lyapunov function. The proposed control guarantees global asymptotic stability for link trajectory control while keeping all internal signals bounded. Since joint flexibility is used as a control parameter, the proposed control is not restricted by the degree of joint flexibility and be applied to flexibility-joint, partly-flexibility, or rigid-joint robots without modification. the effectiveness of the proposed control has been by computer simulation.

  • PDF

Adaptive control of flexible joint manipulators based on the singular perturbation theory (특이 섭동 이론에 의한 유연성 관절 매니퓰레이터의 적응제어)

  • 김응석;양해원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.7-11
    • /
    • 1991
  • The adaptive control of flexible joint manipulator is the focus of this paper. The full order flexible joint manipulator dynamic system does not allow the determination of a feedback linearization control as for rigid manipulators. This drawback is overcome by a model order reduction based on a singular perturbation strategy. The full order flexible joint manipulator dynamic model is adopted for derivation of the adaptive control law to damp out the elastic oscillations at the joints. It is shown that the joint position error will converge to zero asymptotically and that other signals remain bounded without precise knowledge of parameters of the manipulator and its joint flexibility.

  • PDF

Servo control of a manipulator and trajectory planning (매니퓨레이터 서보제어와 궤도 계획)

  • 최진태;박상덕
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.135-139
    • /
    • 1990
  • In general, the control of robot arms falls into two board categories (position control and force control). The joint interpolated trajectory schemes generally interpolate the desired joint path by a class of polynomial functions and generate a sequence of time based control set points for the control of a manipulator from a initial location to its destination. A digital position controller was designed and adapted to the industrial balancing manipulator. And also, the joint interpolated trajectory using 3rd order polynomial was generated in this study. The IBM PC used as the main controller and the trajectory planner had enough run-time capabilities. The 8097BH microcontroller is an integral pan of the joint controller which directly controls an axis of motion. The PI servo control system to treat each joint of the robot arm as a independent joint servo mechanism had satisfying performance, and a sequence of time-based intermediate configurations of the manipulator hand showed good continuity and smoothness on position and velocity of the manipulator's joint coordinates along the trajectory.

  • PDF

Correlation between sway magnitude and joint reaction force during postural balance control (자세 균형 제어 시 동요의 강도와 관절 반발력의 상관관계)

  • 서민좌;조원학;최현기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1160-1165
    • /
    • 2004
  • The purpose of this study was to calculate three dimensional angular displacements, moments and joint reaction forces of the ankle joint during the waist pulling, and to assess the ankle joint reaction forces according to different perturbation modes and different levels of perturbation magnitude. Ankle joint model was assumed 3-D ball and socket joint which is capable of three rotational movements. We used 6 cameras, force plate and waist pulling system. Two different waist pulling systems were adopted for forward sway with three magnitudes each. From motion data and ground reaction forces, we could calculate 3-D angular displacements, moments and joint reaction forces during the recovery of postural balance control. From the experiment using falling mass perturbation, joint moments were larger than those from the experiment using air cylinder pulling system with milder perturbation. However, JRF were similar nevertheless the difference in joint moment. From this finding, we could conjecture that the human body employs different strategies to protect joints by decreasing joint reaction forces, like using the joint movement of flexion or extension or compensating joint reaction force with surrounding soft tissues. Therefore, biomechanical analysis of human ankle joint presented in this study is considered useful for understanding balance control and ankle injury mechanism.

  • PDF