• Title/Summary/Keyword: Joint Analysis

Search Result 5,221, Processing Time 0.042 seconds

Development of a Model for the Estimation of Knee Joint Moment at MVC (MVC 상태에서의 무릎관절 모멘트 추정을 위한 모델 개발)

  • Nam, Yoon-Su;Lee, Woo-Eun
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.3
    • /
    • pp.222-230
    • /
    • 2008
  • This paper introduces a method of estimating the knee joint moment developed during MVC. By combining the Hill-type muscle model and analytic results on moment arm and musculotendon length change as a function of hip and knee joint angle, the knee joint moment at a specific knee joint angle during MVC is determined. Many differences between the estimated results and the experimental data are noted. It is believed that these differences originate from inaccurate information on the muscle-tendon parameters. The establishment of exact values for the subject's muscle parameters is almost impossible task. However, sensitivity analysis shows that the tendon slack length is the most critical parameter when applying the Hill-type muscle model. The effect of a change of this parameter on the muscle length force relationship is analyzed in detail.

Parametric Study of Steel-Al Alloy SPR Joint Process via Finite Element Analysis (유한요소해석을 통한 Steel-Al합금 SPR 접합공정 주요인자 분석)

  • Kim, S.H.;Park, N.;Song, J.H.;Noh, W.;Park, K.Y.;Bae, G.
    • Transactions of Materials Processing
    • /
    • v.29 no.6
    • /
    • pp.301-306
    • /
    • 2020
  • The parametric study of Steel-Al alloy SPR joint process is based on the FE simulation described by Kim et al. [10], which was validated by comparing experimental and simulation results for two kinds of steel-Al alloy combinations according to the lower sheet thickness. To analyze the SPR joint process, the friction coefficient, the lower sheet thickness, and the rivet length were selected as the main parameters. Based on FE simulations, the effect of main parameters was investigated by measuring the interlock and the bottom thickness at the cross-sectional shape of the SPR joint. The results of simulation facilitate the design of SPR joint process in various metal combinations.

Development of swiver joint on hydraulic machine (유압시험기 swivel joint의 개발)

  • Shin, H.G.;Kim, H.Y.;Bang, H.I.;Kim, S.B.;Kim, T.Y.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.1
    • /
    • pp.89-94
    • /
    • 2011
  • The swivel joint is an important part in hydraulic machine. The analysis on the material was made using the EDAX method to localize the swivel joint. Also, the modeling and design drawing were finalized with application of 3 dimensional measurement and structure analysis. The prototype product based on design drawing was made with cutting and grinding process. No abnormalities were found in the prototype product through the durability test and measurement. The localized swivel joint with light weight, price reduction and diversification was developed in this study.

A Method for the Reduction of Skin Marker Artifacts During Walking : Application to the Knee

  • Mun, Joung-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.825-835
    • /
    • 2003
  • Previous studies have demonstrated the importance of joint angle errors mainly due to skin artifact and measurement errors during gait analysis. Joint angle errors lead to unreliable kinematics and kinetic analyses in the investigation of human motion. The purpose of this paper is to present the Joint Averaging Coordinate System (JACS) method for human gait analysis. The JACS method is based on the concept of statistical data reduction of anatomically referenced marker data. Since markers are not attached to rigid bodies, different marker combinations lead to slightly different predictions of joint angles. These different combinations can be averaged in order to provide a "best" estimate of joint angle. Results of a gait analysis are presented using clinically meaningful terminology to provide better communication with clinical personal. In order to verify the developed JACS method, a simple three-dimensional knee joint contact model was developed, employing an absolute coordinate system without using any kinematics constraint in which thigh and shank segments can be derived independently. In the experimental data recovery, the separation and penetration distance of the knee joint is supposed to be zero during one gait cycle if there are no errors in the experimental data. Using the JACS method, the separation and penetration error was reduced compared to well-developed existing methods such as ACRS and Spoor & Veldpaus method. The separation and penetration distance ranged up to 15 mm and 12 mm using the Spoor & Veldpaus and ACRS method, respectively, compared to 9 mm using JACS method. Statistical methods like the JACS can be applied in conjunction with existing techniques that reduce systematic errors in marker location, leading to an improved assessment of human gait.

Dynamic Manipulability Analysis of Underwater Robotic Arms with Joint Velocities (관절속도를 가지는 수중로봇팔의 동적 조작도 해석)

  • JEON BONG-HWAN;LEE JIHONG;LEE PAN-MOOK
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.204-209
    • /
    • 2004
  • This paper describes dynamic manipulability analysis of robotic arms moving in viscous fluid. The Manipulability is a functionality of manipulator system in a given configuration and under the limits of joint ability with respect to the tasks required to bt performed. To investigate the manipulability of underwater robotic arms, a modeling and analysis method are presented. The dynamic equation of motion of underwater manipulator is derived from the Lagrange - Euler equation considering with the hydraulic forces caused by added mass, buoyancy and hydraulic drag. The hydraulic drag term in the equation: is established as analytical form using Denavit - Hartenberg (D-H) link coordination of manipulator. Two analytical approaches based on Manipulability Ellipsoid are presented to visualize the manipulability of robotic arm moving in viscous fluid. The one is scaled ellipsoid which transforms the boundary of joint torque to acceleration boundary of end-effector by normalizing the torque in joint space while the other is shifted ellipsoid which depicts total acceleration boundary of end-effector by shifting the ellipsoid in work space. An analysis example of 2-link manipulator with proposed analysis scheme is presented to validate the method.

  • PDF

FEM Analysis of the Spline Joint with Bolt Pre-load (스플라인결합 조인트의 볼트 예하중에 대한 유한요소 해석)

  • Tak, Seung-Min;Kang, Min-Kyu;Park, Dong-Jin;Lee, Seok-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.11
    • /
    • pp.1316-1322
    • /
    • 2011
  • Most of the mechanical structures use bolting or spot welding for the whole structure. In recent years, bolting & rivets are used rather than the welding due to reassembly and repair. Analysis of bolted joints is so complicate that many conditions must be considered such as pre-load and contact, etc.. Bolted joint analysis is done by theoretical, experimental & numerical methods. However, numerical analysis in the bolted joint is used because the contact and stress in the joints are changed due to the pre-load. In this study, we analysis the slip and the deformation of the contact area in the joint depending on the pre-load and find the optimized bolting condition.

Comparisons of Kinematical Analysis for the Universal-joint System by Using Finite Rotations and Quaternions (유한회전과 4원수를 이용한 유니버설 조인트 시스템의 기구해석 비교)

  • Yun, Seong-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.2
    • /
    • pp.183-189
    • /
    • 2010
  • This paper deals with the comparison of analysis methodologies by applying both Euler angle and quaternion to observe the kinematical behavior of the universal joint system used as an automotive drive-shaft. At first, conventional approaches are applied to predict a kinematical behavior by introducing only Euler angles into the universal joint system, but turns out to be lack in consistency and reliability of the analysis. Then to overcome this deficiency in numerical analysis a different methodology is proposed by using quaternion in this system. Its corresponding advantage is discussed in terms of kinetic energy, rotational velocity and rotational displacement. The application of quaternions in the numerical experiment is shown to be a more useful and valid way of establishing the ideal analytical model of the universal joint system.

Vibration Analysis of the Temporomandibular Joint Sounds (측두하악 관절잡음의 진동 분석)

  • Jeong, Da-Un;Jeong, Jae-Hyeon;Gang, Dong-Wan
    • The Journal of the Korean dental association
    • /
    • v.46 no.4
    • /
    • pp.232-242
    • /
    • 2008
  • 관절잡음의 발생은 측두하악 관절의 구조적, 기능적 이상의 징후로 여겨져왔다. 이러한 관절잡음을 평가하는데 electrovibratography가 비침습적이고 신뢰할만한 방법으로 제시되어 왔으며 이를 통해 관절잡음의 진동수와 진폭 및 전체 에너지 양상을 숫자화하고 도식화 하는 것이 가능하게 되었다. 기존의 연구에서 여러 가지 관절잡음의 양적, 질적 분석이 시도되어 왔다. 이번 연구의 목적은 관절 잡음이 도식화되어 나타나는 frequency spectrum pattern을 integral>300Hz/<300Hz ratio와 함께 분석하는 것이다. 본 실험에서는 Joint Vibration AnalysisTM를 사용하여 측두하악 관절 장애의 증상이 없는 10명의 대조군과 관절 잡음과 동통이 있으나 개구제한을 보이지 않는 정복성 관절원판 변위의 범주에 있는 20명의 실험군에서 관절진동을 분석하였으며 관절진동 기록 시에 Jaw tracker를 함께 사용하여 개폐구시 관절잡음 발생의 위치를 감별하고 치아접촉음을 배제하여 관절잡음을 분석하였다. 그 후 실험군을 frequency spectrum pattern에 따라 4가지 하위 그룹으로 나누어 분석하였다. 실험 결과 실험군과 대조군의 하위 그룹 1에서 유사한 frequency spectrum pattern과 ratio범위를 보였으며 실험군의 하위 그룹 2,3,4 에서는 더 불규칙한 에너지 양상을 보이는 frequency spectrum pattern과 더 큰 ratio가 관찰 되었다. 이번 연구를 통해 Joint Vibration AnalysisTM가 악관절 진동의 특성을 감별하는데 유용함을 알 수 있었고 Joint Vibration AnalysisTM를 이용한 지속적인 진동 분석이 환자 교육뿐 아니라 성공적인 턱관절 기능이상의 진단과 치료에 유용할 것으로 사료된다.

  • PDF

Joint disturbance torque analysis for robots and its application in straight line path placement (로봇의 관절외란해석을 이용한 직선궤적 위치결정)

  • ;Choi, Myuoung Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1824-1827
    • /
    • 1997
  • Majority of industrial robots are controlled by a simple joint servo control of joint actuators. In this type of control, the performance of control is influenced greatly by the joint interaction torques including Coriolis and centrifugal forces, which act as disturbance torques to the control system. As the speed of the robot increases, the effect of this disturbance torque increases, and makes the high speed-high precision control more difficult to achieve. In this paper, the joint disturbance torque of robots is analyzed. The joint disturbance torque is defined using the coefficients of dynamic equation of motion, and for the case of a 2DOF planar robot, the conditions for the maximum joint disturbance torques are identified, and the effect of link parameters and joint variables on the joint disturbance torque are examined. Then, a solutioin to the optimal path placement problem is proposed that minimizes the joint disturbance torque are examined. then, a solution to the optimal path placement problem is proposed that minimizes the joint disturbance torque during a straight line motion. the proposed method is illustrated using computer simulation. the proposed solution method cna be applied to the class of robots that are controlled by independent joint sevo control, which includes the vast majority of industrial robots. By minimizing the joint disturbacne torque during the motion, the simple joint servo controlled robot can move with improved path tracking accuracy at high speed.

  • PDF