• Title/Summary/Keyword: Joining Efficiency

Search Result 190, Processing Time 0.025 seconds

Joining and Performance of Alkali Metal Thermal-to-electric Converter (AMTEC) (알칼리금속 열전기변환장치의 접합과 출력성능)

  • Suh, Min-Soo;Lee, Wook-Hyun;Woo, Sang-Kuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.7
    • /
    • pp.665-671
    • /
    • 2017
  • The alkali-Metal Thermal-to-electric Converter (AMTEC) is one of the promising static energy conversion technologies for the direct conversion of thermal energy to electrical energy. The advantages over a conventional energy converter are its high theoretical conversion efficiency of 40% and power density of 500 W/kg. The working principle of an AMTEC battery is the electrochemical reaction of the sodium through an ion conducting electrolyte. Sodium ion pass through the hot side of the beta"-alumina solid electrolyte (BASE) primarily as a result of the pressure difference. This pressure difference across the BASE has a significant effect on the overall performance of the AMTEC system. In order to build the high pressure difference across the BASE, hermeticity is required for each joined components for high temperature range of $900^{\circ}C$. The AMTEC battery was manufactured by utilizing robust joining technology of BASE/insulator/metal flange interfaces of the system for both structural and electrical stability. The electrical potential difference between the anode and cathode sides, where the electrons emitted from sodium ionization and recombined into sodium, was characterized as the open-circuit voltage. The efforts of technological improvement were concentrated on a high-power output and conversion efficiency. This paper discusses about the joining and performance of the AMTEC systems.

Finite element analysis of welding process by parallel computation (병렬 처리를 이용한 용접 공정 유한 요소 해석)

  • 임세영;김주완;최강혁;임재혁
    • Proceedings of the KWS Conference
    • /
    • 2003.11a
    • /
    • pp.156-158
    • /
    • 2003
  • An implicit finite element implementation for Leblond's transformation plasticity constitutive equations, which are widely used in welded steel structure is proposed in the framework of parallel computing. The implementation is based upon the multiplicative decomposition of deformation gradient and hyper elastic formulation. We examine the efficiency of parallel computation for the finite element analysis of a welded structure using domain-wise multi-frontal solver.

  • PDF

The Evaluation of Tube to Tubesheet Joint Part on Nuclear S/G (원자력 증기발생기 튜브/튜브시트 확관방법별 특성평가)

  • 심상한;배강국;김인수
    • Proceedings of the KWS Conference
    • /
    • 1996.05a
    • /
    • pp.34-37
    • /
    • 1996
  • The expanding method of tube to tubesheet joint part on neclear steam generators are classified into three classes of roller expanding, explosive expanding and hydraulic expanding. After the expanded Mock-Up specimen are made by the three expanding method. The general properties, microstructure/microvickers hardness, pull-out strength, hydraulic leak pressure, of tube to tubesheet joint part were inspected. and We evaluated the operation efficiency of expansion, reproduction of expanded joint about three expanding method. Through the overall evaluation of tube to tubesheet joint part, The hydraukic expanding and explosive expanding could be certificated more useful expanding method.

  • PDF

Three dimensional finite element analysis of art-welding processor via parallel compuating (아크 용접 공정의 3차원 병렬처리 유한 요소 해석)

  • 임세영;김주완;김현규;조영삼
    • Proceedings of the KWS Conference
    • /
    • 2002.05a
    • /
    • pp.161-163
    • /
    • 2002
  • An implicit finite element implementation for Leblond's transformation plasticity constitutive equations, which are widely used in welded steel structure is proposed in the framework of parallel computing. The implementation is based upon the updated Lagrangian formulation. We examine the efficiency of parallel compuatation for the finite element analysis of a welded structure using multi-frontal solver.

  • PDF

Yeonggwang #1/2 steam condenser leakage repair works (영광 #1/2 복수기 누수부 보수공사)

  • 이상철;공창식
    • Proceedings of the KWS Conference
    • /
    • 2003.05a
    • /
    • pp.117-119
    • /
    • 2003
  • Power plant efficiency and availability depend greatly on condenser performance. However, during commissioning of Yeonggwang #1/2 steam condenser sodium leakage occurred, because of tube to tubesheet only roll expanding. Therefore this report is explaining that pre-test for the shake of improvement reliable repair processes & selected sampling tube re-expansion in-situ applications.

  • PDF

Evolution of CRISPR towards accurate and efficient mammal genome engineering

  • Ryu, Seuk-Min;Hur, Junseok W;Kim, Kyoungmi
    • BMB Reports
    • /
    • v.52 no.8
    • /
    • pp.475-481
    • /
    • 2019
  • The evolution of genome editing technology based on CRISPR (clustered regularly interspaced short palindromic repeats) system has led to a paradigm shift in biological research. CRISPR/Cas9-guide RNA complexes enable rapid and efficient genome editing in mammalian cells. This system induces double-stranded DNA breaks (DSBs) at target sites and most DNA breakages induce mutations as small insertions or deletions (indels) by non-homologous end joining (NHEJ) repair pathway. However, for more precise correction as knock-in or replacement of DNA base pairs, using the homology-directed repair (HDR) pathway is essential. Until now, many trials have greatly enhanced knock-in or substitution efficiency by increasing HDR efficiency, or newly developed methods such as Base Editors (BEs). However, accuracy remains unsatisfactory. In this review, we summarize studies to overcome the limitations of HDR using the CRISPR system and discuss future direction.

Properties of Lead-free Solder Joints on Flexible Substrate for Automotive Electronics (자동차 전장을 위한 플렉시블 기판 무연 솔더 접합부 특성)

  • Ahn, Sungdo;Choi, Kyeonggon;Park, Dae Young;Jeong, Gyu-Won;Baek, Seungju;Ko, Yong-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.2
    • /
    • pp.25-30
    • /
    • 2018
  • Sn-Pb solder has been used in automotive electronics for decades. However, recently, due to the environmental and health concerns, some international environmental organizations such as the end-of-life vehicle (ELV) enacted legislation banning of the Pb usage in automotive electronics. For this reason, many studies to develop and promote Pb-free soldering have been significantly reported. Meanwhile, because of flexibility and lightweight, flexible printed circuit boards (FPCBs) have been increasingly used in automotive electronics for lightweight to improve fuel efficiency and space utilization. Although the properties of lead-free solders for automotive electronics have been widely studied, there is a lack of research on the reliability performance of the lead-free solder joint on FPCB under user conditions. This study reported the properties of solder joints between Pb-free solders such as Sn3.0Ag0.5Cu, Sn0.7Cu and Sn0.5Cu0.01Al (Si), and various FPCBs finished with organic solderability preservative (OSP) and electroless nickel immersion gold (ENIG). To evaluate on joint properties and reliabilities with different solder compositions and surface-finishing materials, pull strength test, thermal shock test, and bending cycle test were performed and analyzed. After the bending cycle test of solder joint on OSP-finishing, the fractures were occurred in solder and the lifetime of Sn3.0Ag0.5Cu solder joint was the longest.

Design of a Stainless Steel Insert for Mechanical Joining of Long Fiber-reinforced Composite Structures (장섬유강화 복합재료 구조물의 기계적 접합을 위한 스테인레스 강 인서트 설계)

  • Lee, Sung-Woo;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.31 no.4
    • /
    • pp.139-144
    • /
    • 2018
  • Long Fiber-reinforced composites have advantages of excellent production efficiency and formability of complex shapes compared to conventional continuous fiber reinforced composite materials. However, if we need to make complicated composite shapes or to assemble parts made of different materials, a variety of joining methods are needed. In general, long fiber prepreg sheet (LFPS) contains mold release agent to facilitate demolding after thermoforming. Therefore, mechanical fastening is required in addition to the adhesive bonding to get proper joining strength. In this study, we proposed a stainless steel insert for co-cure bonding which cures LFPS and bonds the stainless steel insert through thermoforming process. The wing of the insert which is spread during the thermoforming process induces adhesion and mechanical wedging effect and serves as a hook to resist the pulling force. The burn-out method was used to confirm the unfolded state of the stainless steel insert wings inserted into the composite material. The static pull-out test was performed to quantitatively evaluate the joining strength. From these experimental results, the condition which guarantees the most appropriate joining strength was derived.

Photocatalytic Property of Nano-Structured TiO$_2$ Thermal Sprayed Coating - Part II: TiO$_2$ -WO$_3$ Coating - (나노구조 TiO$_2$용사코팅의 미세조직 제어 공정기술 개발과 광촉매 특성평가 - Part II: TiO$_2$- WO$_3$ 코팅 -)

  • 이창훈;최한신;이창희;김형준;신동우
    • Journal of Welding and Joining
    • /
    • v.21 no.4
    • /
    • pp.46-55
    • /
    • 2003
  • TiO$_2$-WO$_3$(8.2wt%) coatings were prepared by the APS (Atmospheric Plasma Spraying) process to clarify the relationship between the process parameters(H$_2$ gas flow rate of plasma 2nd gas and spraying distance) of the APS coating and photo-decomposition efficiency kinetics of the MB(methylene blue) aqueous solution decomposition and to understand the effect of addition of WO$_3$ on photocatalytic properties of TiO$_2$ sprayed coating. Further, the temperature and velocity of flying particles were measured by DPV-2000 to investigate the relationship between microstructure of coatings and process parameters. Properties of coatins were investigated by XRD, SEM, XPS, RAMAN, UV/VIS spectrometer. In case of the TiO$_2$-WO$_3$(8.2wt%) coating, it had a lower anatase fraction than that of pure-TiO$_2$ coatings because of flying in the higher temperature plasma plume by the heavy weight of TiO$_2$, WO$_3$. And, when WO$_3$ added powders were spayed, the doping effects of W ions substituted into the Ti ion sites was not occured during melting and solidification cycles of spraying. It was found that the addition of WO$_3$ was ineffective effective on increasing photo-decomposition efficiency of TiO$_2$ sprayed coating.