• Title/Summary/Keyword: Join Algorithm

Search Result 138, Processing Time 0.026 seconds

Vertically Partitioned Block Nested Loop join on Set-Valued Attributes (집합 값을 갖는 애트리뷰트에 대한 수직적으로 분할된 블록 중첩 루프 조인)

  • Whang, Whan-Kyu
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.209-214
    • /
    • 2008
  • Set-valued attributes appear in many applications to model complex objects occurring in the real world. One of the most important operations on set-valued attributes is the set join, because it provides a various method to express complex queries. Currently proposed set join algorithms are based on block nested loop join in which inverted files are partitioned horizontally into blocks. Evaluating these joins are expensive because they generate intermediate partial results severely and finally obtain the final results after merging partial results. In this paper, we present an efficient processing of set join algorithm. We propose a new set join algorithm that vertically partitions inverted files into blocks, where each block fits in memory, and performs block nested loop join without producing intermediate results. Our experiments show that the vertical bitmap nested set join algorithm outperforms previously proposed set join algorithms.

  • PDF

An Advanced Parallel Join Algorithm for Managing Data Skew on Hypercube Systems (하이퍼큐브 시스템에서 데이타 비대칭성을 고려한 향상된 병렬 결합 알고리즘)

  • 원영선;홍만표
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.3_4
    • /
    • pp.117-129
    • /
    • 2003
  • In this paper, we propose advanced parallel join algorithm to efficiently process join operation on hypercube systems. This algorithm uses a broadcasting method in processing relation R which is compatible with hypercube structure. Hence, we can present optimized parallel join algorithm for that hypercube structure. The proposed algorithm has a complete solution of two essential problems - load balancing problem and data skew problem - in parallelization of join operation. In order to solve these problems, we made good use of the characteristics of clustering effect in the algorithm. As a result of this, performance is improved on the whole system than existing algorithms. Moreover. new algorithm has an advantage that can implement non-equijoin operation easily which is difficult to be implemented in hash based algorithm. Finally, according to the cost model analysis. this algorithm showed better performance than existing parallel join algorithms.

Spatio- Temporal Join for Trajectory of Moving Objects in the Moving Object Database

  • Lee Jai-Ho;Nam Kwang-Woo;Kim Kwang-Soo
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.287-290
    • /
    • 2004
  • In the moving object database system, spatiotemporal join is very import operation when we process join moving objects. Processing time of spatio-temporal join operation increases by geometric progression with numbers of moving objects. Therefore efficient methods of spatio-temporal join is essential to moving object database system. In this paper, we propose spatio-temporal join algorithm with TB-Tree that preserves trajectories of moving objects, and show result of test. We first present basic algorithm, and propose cpu-time tunning algorithm and IO-time tunning algorithm. We show result of test with data set created by moving object generator tool.

  • PDF

k-NN Join Based on LSH in Big Data Environment

  • Ji, Jiaqi;Chung, Yeongjee
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.2
    • /
    • pp.99-105
    • /
    • 2018
  • k-Nearest neighbor join (k-NN Join) is a computationally intensive algorithm that is designed to find k-nearest neighbors from a dataset S for every object in another dataset R. Most related studies on k-NN Join are based on single-computer operations. As the data dimensions and data volume increase, running the k-NN Join algorithm on a single computer cannot generate results quickly. To solve this scalability problem, we introduce the locality-sensitive hashing (LSH) k-NN Join algorithm implemented in Spark, an approach for high-dimensional big data. LSH is used to map similar data onto the same bucket, which can reduce the data search scope. In order to achieve parallel implementation of the algorithm on multiple computers, the Spark framework is used to accelerate the computation of distances between objects in a cluster. Results show that our proposed approach is fast and accurate for high-dimensional and big data.

Efficient Record Filtering In-network Join Strategy using Bit-Vector in Sensor Networks (센서 네트워크에서 비트 벡터를 이용한 효율적인 레코드 필터링 인-네트워크 조인 전략)

  • Song, Im-Young;Kim, Kyung-Chang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.4
    • /
    • pp.27-36
    • /
    • 2010
  • The paper proposes RFB(Record Filtering using Bit-vector) join algorithm, an in-network strategy that uses bit-vector to drastically reduce the size of data and hence the communication cost. In addition, by eliminating data not involved in join result prior to actual join, communication cost can be minimized since not all data need to be moved to the join nodes. The simulation result shows that the proposed RFB algorithm significantly reduces the number of bytes to be moved to join nodes compared to the popular synopsis join(SNJ) algorithm.

A Spatial Hash Strip Join Algorithm for Effective Handling of Skewed Data (편중 데이타의 효율적인 처리를 위한 공간 해쉬 스트립 조인 알고리즘)

  • Shim Young-Bok;Lee Jong-Yun
    • Journal of KIISE:Databases
    • /
    • v.32 no.5
    • /
    • pp.536-546
    • /
    • 2005
  • In this paper, we focus on the filtering step of candidate objects for spatial join operations on the input tables that none of the inputs is indexed. Over the last decade, several spatial Join algorithms for the input tables with index have been extensively studied. Those algorithms show excellent performance over most spatial data, while little research on solving the performance degradation in the presence of skewed data has been attempted. Therefore, we propose a spatial hash strip join(SHSJ) algorithm that can refine the problem of skewed data in the conventional spatial hash Join(SHJ) algorithm. The basic idea is similar to the conventional SHJ algorithm, but the differences are that bucket capacities are not limited while allocating data into buckets and SSSJ algorithm is applied to bucket join operations. Finally, as a result of experiment using Tiger/line data set, the performance of the spatial hash strip join operation was improved over existing SHJ algorithm and SSSJ algorithm.

An Efficient M-way Stream Join Algorithm Exploiting a Bit-vector Hash Table (비트-벡터 해시 테이블을 이용한 효율적인 다중 스트림 조인 알고리즘)

  • Kwon, Tae-Hyung;Kim, Hyeon-Gyu;Lee, Yu-Won;Kim, Myoung-Ho
    • Journal of KIISE:Databases
    • /
    • v.35 no.4
    • /
    • pp.297-306
    • /
    • 2008
  • MJoin is proposed as an algorithm to join multiple data streams efficiently, whose characteristics are unpredictably changed. It extends a symmetric hash join to handle multiple data streams. Whenever a tuple arrives from a remote stream source, MJoin checks whether all of hash tables have matching tuples. However, when a join involves many data streams with low join selectivity, the performance of this checking process is significantly influenced by the checking order of hash tables. In this paper, we propose a BiHT-Join algorithm which extends MJoin to conduct this checking in a constant time regardless of a join order. BiHT-Join maintains a bit-vector which represents the existence of tuples in streams and decides a successful/unsuccessful join through comparing a bit-vector. Based on the bit-vector comparison, BiHT-Join can conduct a hash join only for successful joining tuples based on this decision. Our experimental results show that the proposed BiHT-Join provides better performance than MJoin in the processing of multiple streams.

A MapReduce-based kNN Join Query Processing Algorithm for Analyzing Large-scale Data (대용량 데이터 분석을 위한 맵리듀스 기반 kNN join 질의처리 알고리즘)

  • Lee, HyunJo;Kim, TaeHoon;Chang, JaeWoo
    • Journal of KIISE
    • /
    • v.42 no.4
    • /
    • pp.504-511
    • /
    • 2015
  • Recently, the amount of data is rapidly increasing with the popularity of the SNS and the development of mobile technology. So, it has been actively studied for the effective data analysis schemes of the large amounts of data. One of the typical schemes is a Voronoi diagram based on kNN join algorithm (VkNN-join) using MapReduce. For two datasets R and S, VkNN-join can reduce the time of the join query processing involving big data because it selects the corresponding subset Sj for each Ri and processes the query with them. However, VkNN-join requires a high computational cost for constructing the Voronoi diagram. Moreover, the computational overhead of the VkNN-join is high because the number of the candidate cells increases as the value of the k increases. In order to solve these problems, we propose a MapReduce-based kNN-join query processing algorithm for analyzing the large amounts of data. Using the seed-based dynamic partitioning, our algorithm can reduce the overhead for constructing the index structure. Also, it can reduce the computational overhead to find the candidate partitions by selecting corresponding partitions with the average distance between two seeds. We show that our algorithm has better performance than the existing scheme in terms of the query processing time.

Processing Sliding Window Multi-Joins using a Graph-Based Method over Data Streams (데이터 스트림에서 그래프 기반 기법을 이용한 슬라이딩 윈도우 다중 조인 처리)

  • Zhang, Liang;Ge, Jun-Wei;Kim, Gyoung-Bae;Lee, Soon-Jo;Bae, Hae-Young;You, Byeong-Seob
    • Journal of Korea Spatial Information System Society
    • /
    • v.9 no.2
    • /
    • pp.25-34
    • /
    • 2007
  • Existing approaches that select an order for the join of three or more data streams have always used the simple heuristics. For their disadvantage - only one factor is considered and that is join selectivity or arrival rate, these methods lead to poor performance and inefficiency In some applications. The graph-based sliding window multi -join algorithm with optimal join sequence is proposed in this paper. In this method, sliding window join graph is set up primarily, in which a vertex represents a join operator and an edge indicates the join relationship among sliding windows, also the vertex weight and the edge weight represent the cost of join and the reciprocity of join operators respectively. Then the optimal join order can be found in the graph by using improved MVP algorithm. The final result can be produced by executing the join plan with the nested loop join procedure, The advantages of our algorithm are proved by the performance comparison with existing join algorithms.

  • PDF

Skewed Data Handling Technique Using an Enhanced Spatial Hash Join Algorithm (개선된 공간 해쉬 조인 알고리즘을 이용한 편중 데이터 처리 기법)

  • Shim Young-Bok;Lee Jong-Yun
    • The KIPS Transactions:PartD
    • /
    • v.12D no.2 s.98
    • /
    • pp.179-188
    • /
    • 2005
  • Much research for spatial join has been extensively studied over the last decade. In this paper, we focus on the filtering step of candidate objects for spatial join operations on the input tables that none of the inputs is indexed. In this case, many algorithms has presented and showed excellent performance over most spatial data. However, if data sets of input table for the spatial join ale skewed, the join performance is dramatically degraded. Also, little research on solving the problem in the presence of skewed data has been attempted. Therefore, we propose a spatial hash strip join (SHSJ) algorithm that combines properties of the existing spatial hash join (SHJ) algorithm based on spatial partition for input data set's distribution and SSSJ algorithm. Finally, in order to show SHSJ the outperform in uniform/skew cases, we experiment SHSJ using the Tiger/line data sets and compare it with the SHJ algorithm.