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Abstract

Existing approaches that select an order for the join of three or more data streams have
always used the simple heuristics. For their disadvantage — only one factor is considered
and that is join selectivity or arrival rate, these methods lead to poor performance and
inefficiency in some applications. The graph—based sliding window multi—join algorithm with
optimal join sequence is proposed in this paper. In this method, sliding window join graph is
set up primarily, in which a vertex represents a join operator and an edge indicates the join
relationship among sliding windows, also the vertex weight and the edge weight represent
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the cost of join and the reciprocity of join operators respectively. Then the optimal join order

can be found in the graph by using improved MVP algorithm. The final result can be

produced by executing the join pilan with the nested loop join procedure. The advantages of

our algorithm are proved by the performance comparison with existing join algorithms.

FR0{:0olE] 258, JNZ 0|2, =2 X0, M2 2H3}
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1. ME

Data stream [1] appears in many new
applications recent few years. Data stream is
fast, endless, continuous and real—time,
which is different from traditional static
relations stored in disk. Some representative
applications include processing telephone
call records [2], monitoring Internet traffic
[3] and sensor data [4]. The system that
can process data stream is called Data
Stream Management System (DSMS). Each
element in a data stream can be seemed as
(s,1), where s is the data element and ¢
indicates the corresponding timestamp.

It is impossible to store entire data for
processing, as data stream is infinite and
limited. Therefore,

physical memory s

sliding window [1] may be wused for
preserving the new arrival data that are more
significant. The basic problem about sliding
window is inserting and expiring tuples. So
inserting and expiring tuples leads to two
different re—execution strategies. The eager
re—evaluation strategy generates new results
after each new tuple arrives. The lazy one
re—executes the query periodically, which is
a more practical solution. The query in
DSMS is being executed continuously that is
called continuous query. Generally speaking,

each sliding window maps to one data

stream. A sliding window can be shared by
many continuous queries, and also one
continuous query could inquiry many sliding
windows. The research in this paper is about
the join sequence of many sliding windows
in one query with lazy re—execution strategy.

A simple heuristic based on one parameter
is used for appointing the join sequence of
data stream in the literature, such as
evaluating the most selective predicate first
[5]. However, a graph~based model for
relation join is proposed in [6]. The model
is the weighted direction join graph that
includes many significant factors and can
indicate all possible query plans (various
execution orders). Then using the heuristic
MVP algorithm an effective spanning tree is
found in the graph model. Each spanning
tree is corresponding to a query plan.

As sliding window is a stream—to—relation
operator [1], a correlative graph model can
also be defined to representing sliding
window join. In this graph a node represents
a join operation and a directed edge
indicates the existence of common sliding
window between two nodes. Weight values
with optimization required parameters including
arrival rate, window size and join selectivity
factor are imposed to each node and edge.
The model can represent different kinds of

sliding window join queries. Then we improve
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the MVP algorithm according to the attribute
of data stream to acquire a spanning tree
with low cost. As the computing of execution
plan is not exploited in [6], the nested loop
join algorithm is used to execute the query
plan. Finally, the whole procedure to process
sliding window join is completed.

Several contributions have been made in
this paper. First, we define a novel sliding
window join graph and identify its convenience
of analyzing join query. Then based on the
sliding window join graph we develop a new
integrated join algorithm including the step
that arrange siding windows in an optimal
join order. Finally we describe our implementation
of the proposed algorithm and present
results from a detailed performance study of
the implementations.

Table 1 lists the symbols used in this paper
and their meanings. The rest of the paper is
organized as follows: Section 2 describes
related work and section 3 shows how to use
graph—based approach to process the window
join. Section 4 presents experimental study
of the algorithm. Finally, Section 5 gives the

conclusion.

2. Related works

The related works are classified into two
parts: stream join: the traditional graph
model and MVP algorithm.

2.1 Stream join

Most recent works on joining processing
over data streams are based on Symmetric
Hash doin (SHJ) [7]
pipelining algorithm {8}. SHJ is extended to

which adopts the

(Table 1> Definition of terms

Symbol Meaning

S; Stream j

¥ Sliding window related to stream j
4 Stream j arrival rate

T j Stream j time window size

N j Number of tugles in ¥/

B J Number of hash bucket in ¥

Cn Cost of accessing one tuple in NLJ
Ch Cost of accessing one tuple in HJ
M i Constant

| X} The size of relation X

Jxi The tuple size of relation X

g Join Operator

T Re-execution interval

JSF Join selectivity factor

JCF Join concatenation factor

NOW The time that execute the query plan

XJoin [9] by processing spill overflowing
inputs to disk effectively when memory fills
up. Data stream multi—joins operation also
extends SHJ to two classifications that are
those processing a series of pipelining binary
joins [9] [10], and those defining a single,
symmetric, multiway join operator, such as
Mjoin [5], SteMs [11]. The
graph—based algorithm is related to appoint

proposed

the sequence of many binary join operators.
[10] not only

multiway nested loop join and hash join

proposes incremental

algorithms, also presents a sensible join

ordering heuristic that is sorting the join first
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whose join selectivity is small and
assembling fast streams at or near the top of
the query plan. [5] also researches the
probing sequence of data streams in
experiment. But all above papers do not
discuss the join order of sliding window.
Also no existing join algorithm includes the
step of selecting join order. These problems

are researched in this paper.
2.2 Graph model and MVP algorithm

[2] defines theweighted directed join graph
(WDJG). In this graph, each node represents
a join operation. If a common relation exists
between two nodes, the edge is a physical
edge (PE); if not, the edge is a virtual edge
(VE). The direction of edge implies the join
order. Edge weights indicate the impact of a
join to the cost of the next join. E.g. if there

are two join operators ‘9j=R‘9S and ‘9,-=S‘9T,

the edge weight of *;% is shown as:

st sl /

RIx|S|JSF . (IR|+|S| xJCF .
<| pislosr; (Rl-4sI) ,> -
{L1) v vy is VE (1)

Vertex weights represent the accumulated

impact of a join sequence to a next join

operator. The weight of 9,' is shown as ('9,- is

the next join of 0,' and ;% is PE):
o 1 2
7 o i w?)

1

{mwiswl. s (w2 -——)xJCF,
7Y iT2 i

g . g . we.

J J Ji

A spanning tree becomes an execution
plan in WDJG. For finding query plans
faster, effective spanning tree (EST) is
defined. An effective query plan can be
found in shorter processing time by deleting
ineffective spanning tree and reducing giant
search space.

The Maximum Value Precedence (MVP)
algorithm is a relatively low complexity and
vet high effiency algorithm for optimizing in
WDJG. This algorithm finds a near optimal
solution using only o0@?) time, lower than
existing algorithm. Its idea is to reduce the
cost of expensive join operations as early as
possible [2]. Thus two steps are included in
the algorithm. The first step is to choose an
edge to reduce the costly vertex weight. The
second step is to select an edge that causes
the edges minimum increase to the result of

joins.

3. Design of graph-based sliding window
multi-join

In this chapter, we first introduce the
sliding window join graph and also analyze
the detailed computing of the weight in this
model. We then propose the sliding window

join algorithm based on this model.
3.1 Sliding window join graph

A Sliding Window Weighted Directed Join
Graph (SWWDJG) is a weighted complete
graph. Each vertex represents a join operation
of two sliding windows. Each vertex is
connected to another vertex via two edges in
opposite directions. Physical edges (PE) and

virtual edges (VE) are two kinds of edges in
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each SWWDJG. Physical edges *;% and %"j
exist between vertexes ¥ and ¥j only if there

is a common sliding window between them,

otherwise virtual edges V% and “*j exists.
The direction of an edge indicates an

execution order of 9; after ¢;. Each vertex ”j

and edge ;" is associated with a weight, ¥

and ;j: respectively. They are defined as (3)
(4).

<W_I]I’w_]l
W I JSF (“W MW Ih) I Gﬁ is a PE
<1,1) Vjvi isa VE (3)
W;zcost(ej) (4)

SWWDJG is rather different from WDJG.
Firstly, the join operation represented by
node is processed between sliding windows
instead of static relations. Secondly, when
calculating the edge weight— the cardinality
and the tuple size of relation are replaced by
the window size and the element size in data
stream. And lastly, vertex weight in WDJG is
dependent on its preceding vertex weights,
which makes it difficult to specify. Thus the
vertex weight in SWWDJG is set to the cost
of each join operator, which makes us

compute the join cost easier.

3.2 Computing edge weight and vertex
weight

As the difference of two kinds of sliding

windows [1]: time—based sliding window

$ CES =2 X2 29

and count—based sliding window is the
window size, we only researched the detailed
computation of edge weight and vertex
weight about time—based sliding window.
The edge weight and vertex weight of
count—based sliding window is similar to its.
For each kind of weight, a computation

formula is proposed.
3.2.1 Edge weight

For a virtual edge, the join operations of
VE will not influence each other on the join
cost. Hence, the weight of a VE is defined as
<1,1> to show that the joins are
independent.

Now consider the PE. The tuple size of a
sliding window is constant written as “Wj"=Mj,
”W,-”=M,-. The window size is represented as
'Wj|=‘jTj, JW,-F%T;. As the join selectivity factor
and the join concatenation factor can be
normally collected from statistical information,
the edge weight can be represented by above

factors. So (3) can be reshown as:

Wi = <M§z ji>
[

L

|

v. isa PE

k.‘:

M,

08
I

PR )

vjVi isaVE (5)

3.2.1 Vertex weight

Vertex weight only implies the cost of the
join operation itself. The cost of inserting
and expiring tuples is ignored because it is

not influenced by join ordering. The cost of
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join operation over data stream is rather

different from traditional database. For
relational data join, only the 1/O cost is
contained {CPU cost is much less than 1/O
cost). Instead of storing in the disk, the data
streams directly enter the input buffer then
are insert to the sliding window for
processing. The whole join procedure is
performed in the memory. Thus only the
CPU cost is calculated over data stream.
The data structure of sliding window can
be hash table or queue, which is mapped to
hash join or nested loop join respectively.
Hence based on the unit—time cost model
[9], the cost formulas of nested loop join

and hash join about sliding window are

shown as:

W = Cost(6;)
=(ij"Wi"XWjX"Wi“xcn
=/lejliTl.M jMiCn (6)

Wj=Cost(0j)

& <P ib ke

=/1jleiTiM jMiC
B .B.
Joi

X

W
J

h 7

3.3 Graph-based join algorithm

Using the graph join model, we can deal
with sliding window multi—joins. Figure 1
shows the graph-based sliding window join
algorithm with lazy re—evaluation. As pointed
out earlier, there are three phases in our
algorithm: founding join model, selecting
join query plan and executing query plan.

In the first phase, when setting up the
SWWDJG before probing in step 03, the new
arrival tuples in stream i are seemed as a
new %, to replace the original one, so that
the output result can be updated continuously
with optimal join order. This is similar to the

pipelining algorithm [4] that the new arrival

Input: A continuous sliding window multi-join query

Output: The result tuples

Begin: Every time the query is re-executed
01: Insert new tuples into sliding windows;

02: For i=l-n;

03: Set up the SWWDJG,
04: JoinOrder (SWWDJG);
05: Y% and ¥%,M

If Yar é Leattr ...

Return #4706, W)

WtOW

//loop from "y k
06: Vrkewk and NOW—rsrknéNOW and szs»Tlstlxss:kzs
and tkjs—TZSIzlsSt IS oand e
1f Il.altr0tk.arrr //loop from Wk+\ to Wn

wneﬂ;l and rkJs—Tnsrntssrkf:

1f tralrrﬁtn.attr
07: Return 404 9401,
08: Endif---
09: Endif--
10: Endif
End

(Figure 1> The Graph—based Join Algorithm
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tuples are inserted to its corresponding
sliding window, and then probe other
windows.

In the second phase, we use the improved
MVP algorithm [6] to find an optimal join
query plan in step 04, as the cost of nested
loop join about sliding window is different.

In original MVP algorithm an inflowing edge

—— 1
. w .
‘it whose weight V% is less than 1 can

reduce the cost of vertex ;. That means if
the intermediate result replaces the original
relation the tuple number of join result will
be reduced. But when processing sliding
window, from (6} and (7) we can see the two
weight vectors influence same to join cost.

Thus the inflowing edge whose weight

ijViwij",' is less than 1 can reduce the cost of
sliding window join.

In the last phase, the query plan is
executed through a nested loop join
procedure where the timestamp of tuples
have to satisfy certain condition to make

sure the result is valid.
3.4 Example

In a four time—based sliding windows join
query, 9 is on ¥ and %, 4 on " and *s, 4
on "3 and %, 9 on %, and . Assume that
the tuple size of each sliding window is 100,
and their parameters are shown in Table 2.

Using the graph—based algorithm we first
set up the corresponding SWWDJG in Figure
2. Also the vertex weight (cost of each join

operator) is calculated (here we assume
anl)-

(Table 2> Sliding Window Parameters

O I T T T BT R PUT B

6 0002 | 05 10 100 2 100

% | o000l | 01 2 100 5 100

b, 0.05 02 5 100 1 100

2 0005 | 05 1 100 10 100

— _ _ ]
Wl——cost(Hl) ﬂ.lTlﬂszMleCn =2x10

2

_ _ _ 9
W, =cost(8,) = ATy A, T, My M,C, =0.5x10

_ _ _ 9
= cost(02) = A2T2/13T3M2M3Cn =1x10

il _ 110
W, =cost(6,) = A, T, AT M, M,C_=1x10

V1 <0.5,0.2> V2
<2,1>
A
<0.4,1> <0.5,1> <0.2,0.2> <5,0.4>
<2.5,0.4> ’
<5,1>
V4 V3

(Figure 2> The SWWDJG of the Example Join

In this graph, a near optimal join sequence

is selected by using the improved MVP

algorithm which gives the result: 22"~

v4—>v3.

The comparison among different
join orders is shown below. Obviously the
join order found by the MVP algorithm is

optimal.
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(Table 3>Possible Join Sequence and Their Cost

Effective Spanning Tree Total execution cost
17T 6.44x10°
V)PV T 5.32x10°
V3PV Y, 30.125x10°
v4—)v1——>v2—)v3 3.2><109
v4—)v3—>v2—>v1 17X109
17V 7Y 7.4x10°
37 N T 3.77x107
TV TV T 1.72x10°

4. Performance evaluation

The evaluation environment and the
comparison among our join algorithm
(GRAPH), Lazy Multi—Way NLJ (LAZY) [10]
algorithm and General Lazy Multi—-Way NLJ
(GEN) [10] algorithm are presented in this
LAZY

sequence is ordering the new arrived tuples

chapter. In algorithm, the join
first. The join order in GEN is specified to

select the joining with minimal JSF first.

4.1 Evaluation environment

We implement our algorithm by using VC
programming, which runs on Windows PC
with a 1.8GHz Pentium(R) 4 processor and
1GB physical memory.

The data streams are produced by the
following way. In each iteration of a loop

A
i

n

stream iis selected with probability jil'{j,

while a tuple is generated for the selected

stream. Each tuple includes three attributes:

the system—assigned timestamp &S , the integer
data 4 and the filled part. The integer data is
selected form corresponding data settba;},
The JSF of two windows is calculated as
S S

max(a;.a;)  Towards JCF, the output tuple
size is adjusted by increasing or reducing the
filled part. For each case, certain tuples are
generated and the processing time measured.
Each case is run many times and the average

result is reported.
4.2 Evaluation resulits

In the first experiment, we specify the
window size, value set and JCF. The relative
rates of two streams are set certainly, while
new streams are specified. Figure 3shows
that LAZY is better than GRAPH at the
beginning, but GRAPH outperforms as the
number of window increases. The reason is—
when the number of windows is low ordering
newly arrived tuple first is always optimal so
that GRAPH has to spend extra time finding
query plan. As the number of windows
increases the time saving from executing
query plan is much more than the time to
find the join order. GRAPH is much better
than GEN. That is because JSF in this
experiment is fixed so that GEN selects the
join operator naively. Besides, GRAPH not
only considers JSF but also JCF.

In the second case,the four sliding window
has been joined with parameters in table 2
which is evaluated when varying re—evaluation
intervals. From Figure 4, it can be observed
that the LAZY and GENERAL algorithms are
more expensive than GRAPH with optimal

query plan.
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| —=——GRAPHLAZY —— GRAPH/GEN !

S ———

12 v e e

Cost Ratio

Number Of Windows

<Figure 3> Varying Number of Streams

5. Conclusion

In this paper, we proposed a new graph
model, named SWWDJG, which can properly
all

sliding window multi—join in a standard way.

represent the execution orders about
Many significant parameters have been used
in the graph to calculate the join cost and to
gain optimal query plan. Then we present a
new sliding window join algorithm by using
the model to specify the sliding window join
order. As the query plan selects the optimal
join sequence, the performance can be
improved in a great manner.

In future, we can find more efficient
algorithms to provide query plan based on
the As

algorithm memory

graph—based join
that is big

enough to store all data in sliding window,

graph model.
assumes

we can also research load shedding within

limited memory.
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