• Title/Summary/Keyword: Johnson 시스템

Search Result 29, Processing Time 0.027 seconds

A Design Technique for Stabilization of Inverted Pendulum Cart System on the Inclined Rail (경사 레일상에 있는 도립진자 장치의안정화 설계기법)

  • 박영식;최부귀;윤병도
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.3 no.4
    • /
    • pp.62-69
    • /
    • 1989
  • 휴대용 전기톱을 비롯한 학습 기계장치, 자동차 연동장치, 각종 화학 분석장치 및 산업용 로봇 시스템등의 전기설비에 광범위하게 응용되고 있는 고유 불안정 도립진자 시스템의 동적 안정화 제어기 설계기법이 소개된다. 복잡한 비선형 동특성을 고려한 수학적 모델링과 C. D. Johnson에 의해 제시된 외란 적응 제어 이론을 적응하여, 최적 레귤레이터형 안정화 제어기를 설계하였으며, 컴퓨터 시뮬레이션 및 실험결과가 만족스럽게 나타났다.

  • PDF

Measuring Process Capability with Beta Distributions (베타분포의 공정능력 평가)

  • 김진수;김홍준
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.50
    • /
    • pp.281-291
    • /
    • 1999
  • This paper is a brief review of the different procedures that are available for fitting theoretical distributions to data. The use of each technique is illustrated by reference to a distribution system which including the Pearson, Johnson and Burr functions. These functions can be used to calculate percent out of specification. The main objectives of this study are to propose a new methods for estimating a measure of process capability for Beta distributed variable data by using the percentage nonconforming. The comprehensive information for the process can be used to evaluate more accurately process capability.

  • PDF

A Study on the Development of Impact Analysis Model of Roll Control System for Course Correction Munition (탄도 수정탄 롤제어시스템 충격해석 모델 개발에 관한 연구)

  • Ko, Jun Bok;Yun, Chan Sik;Kim, Yong Dae;Kim, Wan Joo;Cho, Seung Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.8
    • /
    • pp.737-742
    • /
    • 2015
  • Course correction munition are a weapson system for precision attacks and are assembled by applying a ballistic control system to existing projectiles. The roll control system is a subsystem of the ballistic control system and is placed between the guidance and control units inside of the projectile, which undergoes a 5000g lateral acceleration. Thus, it is very important to design the system to endure this load. Many developed countries evaluate the performance and safety of course correction munitions' parts using live-fire gun launch tests or a soft recovery system. However, these methods are expensive and slow. Thus, in this study, we develop impact analysis model of the roll control system using CAE. We apply the code to simulate impact phenomenon and use Johnson-Cook material model for modeling the high strain rate effect on the materials. We also design bearings in detail to analyze their behavior and verify the reliability of CAE model through gas-gun impact tests of the roll control system.

Hypervelocity Impact Analyses Considering Various Impact Conditions for Space Structures with Different Thicknesses (다양한 두께의 우주 구조물에 대한 다양한 충돌 조건의 초고속 충돌 해석 연구)

  • Won-Hee Ryu;Ji-Woo Choi;Hyo-Seok Yang;Hyun-Cheol Shin;Chang-Hoon Sim;Jae-Sang Park
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.4
    • /
    • pp.43-57
    • /
    • 2023
  • The hypervelocity impact simulations of space objects and structures are performed using LS-DYNA. Space objects with spherical, conical, and hollow cylindrical shapes are modeled using the Smoothed Particle Hydrodynamics (SPH). The direct and indirect impact zones of a space structure are modeled using the SPH and finite element methods, respectively. The Johnson-Cook material model and Mie-Grüneisen Equation of State are used to represent the nonlinear behavior of metallic materials in hypervelocity impact. In the hypervelocity impact simulations, various impact conditions are considered, such as the shape of the space object, the thickness of the space structure, the impact angle, and the impact velocity. The shapes of debris clouds are quantitatively classified based on the geometric parameters. Conical space objects provide the worst debris clouds for all impact conditions.

Interface Design Principles for Digital Content (디지털 콘텐츠를 위한 인터페이스 설계 원칙)

  • Park, Sang-Jin
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.11a
    • /
    • pp.860-864
    • /
    • 2006
  • Various kinds of digital contents developers are recognizing the importance of interface design, but they have no integrated and arranged interface design principles, so are facing difficulties in applying them. About the interface of web-site which is one field of the digital contents, there came out necessary principles about the interface design to some extent by the active studying activities in and out of the country. However, the researchers are proposing various principles, so it is difficult to apply which design principle in what situation. To this, this study looks into the common design principles while comparing and analyzing the design principles of Donald A. Norman, Jakob Nielson, Jeff Johnson and Manna Sjoberg. Based on this, we suggest 10 interface design principles to improve the functionality and aesthetics of the digital contents.

  • PDF

Flight Technical Error Modeling for UAV supported by Local Area Differential GNSS (LADGNSS 항법지원을 받는 무인항공기의 비행 기술 오차 모델링 기법)

  • Kim, Kiwan;Kim, Minchan;Lee, Dong-Kyeong;Lee, Jiyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.12
    • /
    • pp.1054-1061
    • /
    • 2015
  • Navigation accuracy, integrity, and safety of commercial Unmanned Aerial Vehicle (UAV) is becoming crucial as utilization of UAV in commercial applications is expected to increase. Recently, the concept of Local-Area Differential GNSS (LADGNSS) which can provide navigation accuracy and integrity of UAV was proposed. LADGNSS can provide differential corrections and separation distances for precise and safe operation of the UAV. In order to derive separation distances between UAVs, modeling of Flight Technical Error (FTE) is required. In most cases, FTE for civil aircraft has been assumed to be zero-mean normal distribution. However, this assumption can cause overconservatism especially for UAV, because UAV may use control and navigation equipments in wider performance range and follow more diverse path than standard airway for civil aircraft. In this research, flight experiments were carried out to understand the characteristics of FTE distribution. Also, this paper proposes to use Johnson distribution which can better describe heavy-tailed and skewed FTE data. Futhermore, Kolmogorov-Smirnov and Anderson-Darling tests were conducted to evaluate the goodness of fit of Johnson model.

Hydrogen Production by Methanol Steam Reforming over Micro-channel Reactor (마이크로 채널 반응기에서 메탄올의 수증기 개질반응을 통한 수소 제조)

  • Lee, Jin-Woo;Jeon, Hye-Jeong;Hong, Sung-Chang
    • Clean Technology
    • /
    • v.15 no.2
    • /
    • pp.130-136
    • /
    • 2009
  • Commercial catalyst (Cu-Zn/$Al_2O_3$, Johnson Matthey Co., 83-3 Catalyst) was applied to the hydrogen production by steam reforming of methanol in the micro-channel reactor (MCR). The steam reforming of methanol was tested over Cu-Zn catalyst at temperatures in the range of 200 and 300$^{\circ}C$, the catalyst size of 0.05${\sim}$2.2 mm, the space velocity of 3,000${\sim}$10,000 $hr^{-1}$ in a fixed bed continuous flow reactor. The conversion of methanol and the yield $H_2$ preferred high temperatures and low space velocities, and had optimal results with the particle size of 0.35 mm. Based on the results from experiments with fixed bed reactor, two types of MCR, boat bed and stacked bed MCRs, were studied. The stacked bed type MCR showed better methanol conversion compared with the boat type one.

Intelligent systems for control

  • Erickson, Jon D.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.4-12
    • /
    • 1996
  • This keynote presentation covers the subject of intelligent systems development for monitoring and control in various NASA space applications. Similar intelligent systems technology also has applications in terrestrial commercial applications. Discussion will be given of the general approach of intelligent systems and description given of intelligent systems under prototype development for possible use in Space Shuttle Upgrade, in the Experimental Crew Return. Vehicle, and in free-flying space robotic cameras to provide autonomy to these spacecraft with flexible human intervention, if desired or needed. Development of intelligent system monitoring and control for regenerative life support subsystems such as NASA's human rated Bio-PLEX test facility is also described. A video showing two recent world's firsts in real-time vision-guided robotic arm and hand grasping of tumbling and translating complex shaped objects in micro-gravity will also be shown.

  • PDF

OPTINAL SCHEDULING OF IDEALIZED MULTI-PRODUCT BATCH OPERATION

  • Lee, In-Beum;Chang, Kun-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.825-827
    • /
    • 1989
  • A heuristic model which determines the scheduling of serial flowshops with minimization of the makespan is proposed for an idealized batch chemical plant. It generates an initial sequence by heuristic reasoning and improves it recursively until no improvement is possible. The heuristic reasoning is based on Johnson's Rule which gives the sequence with the minimum makespan for a two-unit flowshop. The evolutionary step searches the neighborhood of the current sequence for sequences with lower makespan. The robustness of this model is also examined by comparing the minimum makespan of literature examples with the theoretical one.

  • PDF

Scheduling for a Two-Machine, M-Parallel Flow Shop to Minimize Makesan

  • Lee, Dong Hoon;Lee, Byung Gun;Joo, Cheol Min;Lee, Woon Sik
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.23 no.56
    • /
    • pp.9-18
    • /
    • 2000
  • This paper considers the problem of two-machine, M-parallel flow shop scheduling to minimize makespan, and proposes a series of heuristic algorithms and a branch and bound algorithm. Two processing times of each job at two machines on each line are identical on any line. Since each flow-shop line consists of two machines, Johnson's sequence is optimal for each flow-shop line. Heuristic algorithms are developed in this paper by combining a "list scheduling" method and a "local search with global evaluation" method. Numerical experiments show that the proposed heuristics can efficiently give optimal or near-optimal schedules with high accuracy. with high accuracy.

  • PDF