• Title/Summary/Keyword: Jib Crane

Search Result 23, Processing Time 0.031 seconds

A Basic Structural Design for large Floating Crane (대형 해상크레인의 구조 기본 설계)

  • PARK CHAN-HU;KIM BYUNG-WOO;HA MUN-KEUN;CHUN MIN-SUNG
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.42-47
    • /
    • 2004
  • This paper describes basic structural design for the large floating crane barge of fixed undulation type. Structural analysis is performed to divide two parts because crane barge is composed two parts, crane part of jib boom back stay and back tower and barge part to support crane part. The structural strength for jib boom structure members are in compliance with JIS B 8821 and scantling of all barge structural members are in compliance with the requirement of KR (Korean Register of Shipping) Steel Barges and Rules for Classification of Steel Ships. For the structural analysis of large floating crane, MSC/NASTRAN & MSC/PATRAN software is used.

  • PDF

Vibration reduction of provision crane in a ship by structural dynamic modification (구조변경을 통한 선박용 Provision Crane의 진동저감)

  • 김극수;조성재;최수현
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.433-437
    • /
    • 2004
  • A provision crane is generally installed on the upper deck to the rear of the accommodation of the ship in order to load and unload engine part or something heavy. There are two types of provision cranes: one is jib-type and the other is monorail-type. So the natural frequency of the jib-type crane equipment is low, therefore, there are some possibility of resonance between crane structure and the main excitation sources of the ship in normal operating range. This study describe a vibration reduction technique for provision crane by applying a proper countermeasure through finite element analysis and modal test. In order to find out weak point in design of provision crane, a sensitive analysis has been performed.

  • PDF

A Basic Structural Design for Large Floating Crane (대형 해상크레인의 구조 기본 설계)

  • PARK CHAN-HU;KIM BYUNG-WOO;HA MUN-KEUN;CHUN MIN-SUNG
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.1 s.62
    • /
    • pp.71-76
    • /
    • 2005
  • This paper describes basic structural design for the large floating crane barge of fixed undulation type. Structural analysis was performed separately after dividing the floating crane into two parts, The crane part was composed of jib boom, back stay and back tower and the barge part supported the crane part. The structural strength for jib boom structural members are in compliance with JIS B 8821 and scantling of all barge structural members are in compliance with the requirement of KR (Korean Register of Shipping) Steel Barges and Rules for Classification of Steel Ships. For the structural analysis of large floating crane, MSC/NASTRAN and MSC/PATRAN software were used.

Static and Dynamic Analysis for a Double Link Type Level Luffing Jib Crane (이중링크 형식 수평인입 집 크레인의 정적·동적 해석)

  • Moon, D.H.;Hur, C.W.
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.6
    • /
    • pp.715-725
    • /
    • 2000
  • As a link composition of a double link type level luffing jib crane was determinated through the link composition design, the design to be considered will be computations of the luffing trajectory deviation at the fly jib tip and the required luffing device capacity. This paper is a study regarding the static and dynamic analysis for a mechanism of the crane. The objective of the static analysis is to determinate the capacity and the dimension of luffing device when the crane selfload, rated hoisting load, wind load and inertia force are applied on the crane. The objective of dynamic analysis is to compute the luffing trajectory deviation, velocity and inertia force due to luffing acceleration for each link. All analyses are performed by computer programs. The reliability of the program was checked by results from analyses of the related commercial package. It is expected that the productivity and reliability of the design can be improved by this program which can rapidly and exactly deal with static and dynamic analysis for a given link composition of the crane.

  • PDF

A Study on Fatigue Analysis, Reliability and Life Expectancy of a Double Link Type Level Luffing Jib Crane (이중 링크 형식 수평 인입 집 크레인의 피로 해석, 신뢰도 및 수명 예측에 관한 연구)

  • 허철원;문덕홍
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.4
    • /
    • pp.65-73
    • /
    • 2001
  • This paper is a study on the fatigue analysis using BS5400 Part10(1980), code of practice for fatigue for a double link type level luffing jib crane which has been operated since the crane was built in 1985 at a domestic pier. South Korea. In addition, on the basis of the design lift due to fatigue analysis and the number of cracks detected from the nondestructive test the structural reliability and the residual life of the crane is predicted by evaluating the expected development of detectable fatigue oracle during the next five to ten years using Paris's Law for predicting fatigue crack growth and Gaussian probability density function to be reasonable for stress ranges below the mean values determined by laboratory tests. The statistical data used for the analysis of the structural reliability and life expectancy is given in the above referred code.

  • PDF

Remaining Life Estimation of a Level Luffing Crane Component by Computer Simulation (컴퓨터 시뮬레이션을 통한 수평 인입 크레인 구성 재료의 잔존수명 예측)

  • Kim, Sangyeol;Kim, Seongsoo;Choi, Heekyu
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.6
    • /
    • pp.489-497
    • /
    • 2010
  • The remaining life estimation of the level luffing crane component, which has operated for about 20 years is examined carefully, especially on the crane structures. To analyse the crane sructures, the basic load and load combination needed to be considered. We modeled various parts of the level luffing crane to analyse fatigue. Fatigue analysis results showed that the level luffing crane is in the fatigue life so that the crane is in the safe state in fatigue cumulative damage. Analysis results show that the remaining life of a jib upper beam would be about 10 years therefore, the level luffing crane should be stable for fatigue for that period.

Safety Assessment for Installation of Deck Crane by Lifting (데크 크레인의 리프팅 설치 작업에 대한 안전성 평가)

  • Ryu, Hyun-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.3680-3684
    • /
    • 2015
  • A deck crane is installed on the deck of a ship by lifting method using tower crane or floating crane. The safety assessment for two points lifting method should be preceded to ensure a safe installation of deck crane. In this study, finite element models of deck crane and fixing jig are generated for the structural analysis which can evaluate a safety of lifting method. Also, reaction forces and boundary conditions considering lifting state are applied to the structural analysis. The proposed safety assessment method can be useful as an analytic tool that can provide a safer procedure for installation of deck crane by lifting method.

A Study on Fatigue Assessment of the Crane Post due to Vibration during the Emergency Stop (충격하중에 의한 Jib Crane Post의 피로 수명 평가)

  • Kim, Kuk-Su;Kim, Nho-Seong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.633-637
    • /
    • 2011
  • The tall and slender main crane is generally installed on the upper deck to load and unload the equipment or something heavy in the drilling rig or the ship. So the natural frequency of the crane equipment is very low, therefore, there is some possibility of excessive vibration at the emergency state due to sudden stop during the crane operation. This study describes a fatigue assessment due to heavy vibration during brake test of sudden stop because it is necessary the safety of crane is estimated against the heavy vibration. In order to find out the applied force, the vibration measurement and analysis have been performed.

  • PDF

Stress Analysis of a Derrick System Cargo Gear (Derrick식 하역설비의 Vector 삼각형을 이용한 응력해석)

  • Min, Byeong-Eon;Koo, Hong
    • Journal of the Korean Institute of Navigation
    • /
    • v.5 no.2
    • /
    • pp.99-108
    • /
    • 1981
  • As far as ship's cargo handling devicesareconcerned, the derrick system has been used comprehensively in the marine. Even though there are several new devices for ship's cargo gear, such as gantry crane, jib crane adn self unloader, the derrick system, with its improved rigging method, still retains its utmost reputations among ship's owners. Therefore the method of calculating the system's militating stresses in the course of cargo operation needs to be more convenient and analytical. Here the author attempts to introduce the calculating method of stresses by means of vector analysis. The calculating method is able to analyze the stresses acting in every part of the cargo gear systems, such as union purchase, slewing or its modified system.

  • PDF

A Study on the Structural Safety of Tower Crane Telescoping Work according to Wind Speed and Load (타워크레인 텔레스코핑 작업의 풍속 및 하중에 대한 구조 안전성 연구)

  • Jung, Sung-Lyoung;Lee, Do-Geun;Paik, Shinwon;Shin, Sang-Yeon
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.1
    • /
    • pp.9-17
    • /
    • 2021
  • This study analyses the load imbalance of the tower crane used in telescoping work for structural safety, owing to the difference in wind speed and balance weight position. This is because wind speed and position of the balance weight have a significant impact on the structural stresses of a tower crane during telescoping work. Therefore, structural analysis was performed on the 290HC model, which is often used at construction sites and has only one cylinder installed. Moreover, two models were classified to determine the load acting on the connecting part of the telescopic cage to slewing platform and the cylinder. Five types of balance weight positions were applied at regular intervals from jibs; moreover, four types of wind load criteria were differently applied. Hence, the telescopic cage columns were destroyed at all balance weight positions at a wind speed of 30 m/s and only at certain locations at a wind speed of 20 m/s. Furthermore, failures occurred for cylinders, torsional, and bending at wind speeds of 30 m/s and 20 m/s, load imbalances above the allowable thresholds considering the safety factor. In addition, the load imbalance in the telescoping work also varied depending on the position of the balance weights. The results of these studies have validated that the current standards of adjusting the appropriate position of the balance weights on the jib are completely valid, with the telescoping work to be executed only at wind speeds of less than equal to 10 m/s.