• Title/Summary/Keyword: Jet-Fuel

Search Result 479, Processing Time 0.023 seconds

Characteristics of Vertically Injected Buoyant Jet of Highly Diluted Propane (과다 희석된 프로판제트의 상향분사시 부력에 의한 유동특성)

  • Chun Kang Woo;Kim Junhong;Won Sang Hee;Chung Suk Ho
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.529-532
    • /
    • 2002
  • In coflow jets with relatively large size nozzle and low fuel jet velocity, the buoyancy effect arises from the density difference between fuel and air streams. The present study investigated the behavior of such a buoyant cold Jet both numerically and experimentally, especially when the fuel stream has higher density than air. It has been demonstrated that the cold jet has a circular cone shape since upwardly injected fuel jet decelerates and forms a stagnation region, when the fuel jet was composed of propane highly diluted with nitrogen. When the fuel was moderately diluted, numerical results showed the Kelvin-Helmholtz type instability along the mixing layer of the jet. The stagnation height increases nonlihearly with fuel jet velocity with the power of approximately 1.64.

  • PDF

유류 오염지역으로부터 분리된 균주를 이용한 항공유의 분해

  • Park, Cheon-Bo;Nam, Bo-Hyeon;Heo, Byeong-Gi;Yun, Hyeon-Sik
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.395-398
    • /
    • 2002
  • Bioremediation has been showing promise as an alternative to conventional environmental cleanup technologies. The objective of this study is to maximize the degradability of jet fuel in the soil system. The cells isolated from petroleum contaminated site was used for the degradation of jet fuel. When this strain was cultured in the MSM(minimal salt media) containing jet fuel for ten days, the degradability of jet fuel was almost 100%. The concentration of jet fuel did not affect the degradability much and the increased inoculution of strain and addition of nitrogen source decreased the time for complete degradation of jet fuel in the liquid culture. Inoculation of this strain increased the jet fuel degradability in the soil column by 15% and the aeration(50ml/min) and the addition of nutrients($NaNO_3$, $KH_2PO_4$) enhanced the jet fuel degradability(about 90%).

  • PDF

Stability of Attached Flame in $H_2$/CO Syngas Non-premixed Turbulent Jet Flame ($H_2$/CO 합성가스 비예혼합 난류 제트화염에서 부착화염의 화염안정화)

  • Hwang, Jeong-Jae;Bouvet, Nicolas;Sohn, Ki-Tae;Yoon, Young-Bin
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.1
    • /
    • pp.22-29
    • /
    • 2012
  • The detachment stability characteristics of syngas $H_2$/CO jet attached flames were studied. The flame stability was observed while varying the syngas fuel composition, coaxial nozzle diameter and fuel nozzle rim thickness. The detachment stability limit of the syngas single jet flame was found to decrease with increasing mole fraction of carbon monoxide in the fuel. In hydrogen jet flames with coaxial air, the flame detachment stability was found to be independent of the coaxial nozzle diameter. However, velocities of appearance of liftoff and blowout velocities of lifted flames have dependence. At lower fuel velocity range, the critical coaxial air velocity leading to flame detachment increases with increasing fuel jet velocity, whereas at higher fuel velocity range, it decreases. This increasing-decreasing non-monotonic trend appears for all $H_2$/CO syngas compositions (50/50~100/0% $H_2$/CO). To qualitatively understand the flame behavior near the nozzle rim, $OH^*$ chemiluminescence imaging was performed near the detachment limit conditions. For all fuel compositions, local extinction on the rim is observed at lower fuel velocities(increasing stability region), while local flame extinction downstream of the rim is observed at higher fuel velocities(decreasing stability region). Maximum values of the non-monotonic trends appear to be identical when the fuel jet velocity is normalized by the critical fuel velocity obtained in the single jet cases.

Measurement of Ignition Delay Time of Jet Aviation Fuel (혼합 액체 연료인 항공유의 점화지연시간 측정에 관한 연구)

  • Han, Hee Sun;Wang, YuanGang;Kim, Chul Jin;Sohn, Chae Hoon
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.3
    • /
    • pp.35-40
    • /
    • 2017
  • Jet aviation fuel is one of liquid fuel which are used in aircraft engines. Korean domestic jet fuel, called Jet A-1, is tested for measurement of ignition delay time by using a shock tube manufactured recently. The temperature varies from 680 to 1250 K and the pressure and equivalence ratio of Jet A-1/air are fixed 20 atm and 1.0, respectively, for this experiment. The ignition delay time data of Jet A-1 are compared with those of Jet A, which has similar properties to Jet A-1. The behavior of negative-temperature-coefficient (NTC) is observed in the temperature range 750-900 K. In addition, ignition delay time of iso-octane is measured, which is one of the surrogate components for jet aviation fuel. The experimental data are compared and validated with the previous results from the literatures. A surrogate fuel for the present Jet A-1 consists of 45.2% n-dodecane, 32.1% iso-octane, and 22.7% 1,3,5-trimethylbenzene. The predicted ignition delay time for the surrogate agrees well with the measured one for Jet A-1.

Performance Evaluation of Free breathing Fuel Cell by using Synthetic Jet Air Blower (Synthetic Jet Air Blower를 이용한 Free Breathing 연료전지의 성능 평가)

  • Choi, Jong-Pil;Ku, Bo-Sung;Jang, Jae-Hyuk;Seo, Young-Ho;Kim, Byeong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2834-2838
    • /
    • 2008
  • An free breathing proton exchange membrane fuel cell (PEMFC) was developed. This paper presents a study of the several effect on the performance of a fuel cell such as air flow rate, opening ratio, and cathode structures. Especially, an air flow rate is critical condition to improve the fuel cell performance. In this paper, we developed a synthetic jet micro air blower to supply high stoichiometric air. The synthetic jet actuation is usually generated by a traditional PZT-driven actuator, which consists of a small cylindrical cavity, orifices and PZT diaphragms. In comparison with free convection fuel cells, the forced-convection fuel cell which equipped synthetic jet micro air blower brings higher performance and stability for long term test. Also, power consumption of the synthetic jet micro air blower is under 0.3W. The results show that the maximum power density was $188mW/cm^2$ at $400mA/cm^2$. The maximum power density was higher 40% than power density of free convection fuel cell.

  • PDF

The Status of Production and Usage of Bio-Jet Fuel (바이오항공유 생산 및 사용현황)

  • Young-Kwan, Lim;Jin-Woo Doe
    • Applied Chemistry for Engineering
    • /
    • v.34 no.5
    • /
    • pp.472-478
    • /
    • 2023
  • The usage of jet fuel has been increasing with increasing passenger and logistics movements under globalization. CO2, which is the main global warming gas from aircraft, was charged about 3.5% of total global CO2 emissions and 12% of transportation fuel emissions. For these reasons, a lot of governments and the international civil aviation organization (ICAO) are trying to reduce CO2 emissions via the introduction of bio-jet fuel. In this paper, we showed the jet fuel properties, specifications, and presentative production methods of bio-jet fuel such as alcohol to jet (ATJ), oil to jet (OTJ), gas to jet (GTJ) and sugar to jet (STJ). Also, we described the status of global and domestic bio-jet fuel usage and the policy plan for efficient distribution.

An Experimental Study on the Internal Flow Characteristics of a Jet Pump for the Smart UAV Fuel System (스마트무인기 연료계통 제트펌프의 내부 유동 특성에 관한 실험적 연구)

  • Lee, Yoon-Kwon;Lee, Chang-Ho;Choi, Hee-Joo;Lee, Jee-Keun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.2
    • /
    • pp.107-116
    • /
    • 2008
  • The jet pumps are widely used to transfer the fuel between the tanks in an aircraft fuel supply system. However detailed design procedures for determining the size of components of the jet pumps are not known so well. In this paper, the flow characteristics of the jet pump, which is applied in the fuel transfer system for the smart UAV (Unmanned Aerial Vehicle), were experimentally investigated using the acrylic jet pump model for the visualization of the internal flow. The pressure distributions within the jet pump were measured, and then the loss coefficients of each part were calculated. The effects of Reynolds number and the distances (S) between the exit of the primary nozzle and the mixing chamber entrance were investigated. In addition, cavitation phenomena were considered through the flow visualization inside the jet pump. As a conclusion from the experiment, the contraction shape of the primary nozzle has a strong effect on the loss coefficient of the nozzle and the cavitation occurrence. Cavitation starts around the nozzle exit, and then it propagates to the full flow fields of the jet pump.

Bio-Jet Fuel Production Technologies for GHG Reduction in Aviation Sector (항공분야 온실가스 감축을 위한 바이오항공유 제조기술)

  • KIM, JAE-KON;PARK, JO YONG;YIM, EUI SOON;MIN, KONG-IL;PARK, CHEON-KYU;HA, JONG-HAN
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.6
    • /
    • pp.609-628
    • /
    • 2015
  • Thie study presents the biomass-derived jet (bio-jet) fuel production technologies for greenhouse gas (GHG) reduction in aviation sector. The aviation sector is responsible for the 2% of the world anthropogenic $CO_2$ emissions and the 10% of the fuel consumption: airlines' costs for fuel reach 30% of operating costs. In addition, the aviation traffic is expected to double within 15 years from 2012, while fuel consumption and $CO_2$ emissions should double in 25 years. Biojet fuels have been claimed to be one of the most promising and strategic solutions to mitigate aviation emissions. This jet fuel, additionally, must meet ASTM International specifications and potentially be a100% drop-in replacement for current petroleum jet fuel. In this study, the current technologies for producing renewable jet fuels, categorized by alcohols-to-jet, oil-to-jet, syngas-to-jet, and sugar-to-jet pathways are reviewed for process, economic analysis and life cycle assessment (LCA) on conversion pathways to bio-jet fuel.

Synthesis of Renewable Jet Fuel Precursors from C-C Bond Condensation of Furfural and Ethyl Levulinate in Water

  • Cai, Chiliu;Liu, Qiying;Tan, Jin;Wang, Tiejun;Zhang, Qi;Ma, Longlong
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.519-526
    • /
    • 2016
  • Biomass derived jet fuel is proven as a potential alternative for the currently used fossil oriented energy. The efficient production of jet fuel precursor with special molecular structure is prerequisite in producing biomass derived jet fuel. We synthesized a new jet fuel precursor containing branched $C_{15}$ framework by aldol condensation of furfural (FA) and ethyl levulinate (EL), where the latter of two could be easily produced from lignocellulose by acid catalyzed processes. The highest yield of 56% for target jet fuel precursor could be obtained at the optimal reaction condition (molar ratio of FA/EL of 2, 323 K, 50 min) by using KOH as catalyst. The chemical structure of $C_{15}$ precursor was specified as (3E, 5E)-6-(furan-2-yl)-3-(furan-2-ylmethylene)-4-oxohex-5-enoic acid ($F_2E$). For stabilization, this yellowish solid precursor was hydrogenated at low temperature to obtain C=C bonds saturated product, and the chemical structure was proposed as 4-oxo-6-(tetrahydrofuran-2-yl)-3-(tetrahydrofuran-2-yl)-methyl hexanoic acid ($H-F_2E$). The successful synthesis of the new jet fuel precursors showed the significance that branched jet fuel could be potentially produced from biomass derived FA and EL via fewer steps.

A study on the physical properties effect of additive on the Jet A-1 (첨가제를 이용한 Jet A-1 연료의 물성증대 효과 연구)

  • Joo, Hyeong-Uk;Joo, Hyun-Hye;Lee, Ji-Hun;Kwon, Tae-Soo;Han, Jeong-Sik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.702-704
    • /
    • 2011
  • For the representative of the poor performance of liquid fuel(Jet A-1), the physical properties effests of different additive ratios in the liquid fuel have been investigated. The mixed liquid fuel could be analyzed by principal factor of liquid fuel such as, density, viscosity and caloric value. This additives will be usefully applied to high energy density liquid fuel development.

  • PDF