• Title/Summary/Keyword: Jet-Engine

Search Result 326, Processing Time 0.022 seconds

Conceptual Design of Rocket Based Combined Cycle Engine (Rocket Based Combined Cycle Engine의 개념설계 연구)

  • Lee, Yang-Ji;Kang, Sang-Hun;Yang, Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.581-585
    • /
    • 2009
  • In this study, conceptual design of the RBCC (Rocket Based Combined Cycle) engine was performed for the hypersonic propulsion system development. For the flight mission, RBCC engine takes off at sea level and accelerates up to Mach 8 at the altitude of 30km. By the flight speed characteristics, operating pattern of the engine is categorized into 3 modes : Ejector jet (~Mach 3), Ramjet (Mach 3~6), Scramjet (Mach 6~8). According to the engine mode characteristics, RBCC engine design and analysis was performed.

  • PDF

Study on the effect of Jet Fuel alteration on Turbine Engine Performances through Turbine Engine Test (터빈엔진시험을 통한 제트연료 변경에 따른 엔진성능 변화 연구)

  • Kim, You-Il;Min, Seong-Ki
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.2
    • /
    • pp.23-28
    • /
    • 2011
  • The engine ground and altitude tests were carried out to investigate the effect of jet fuel alteration on the performance of a small turbojet engine. JP-S was supplied 8% higher than JP-8 by fuel metering system at the same command. The employment of JP-S showed the similar starting characteristic to that of JP-8, however, difference in the ignition time and acceleration rate of engine speed due to the difference of fuel flow rate by fuel metering system was observed. In spite of jet fuel alteration, the test results yield the similar steady-state engine performance in net thrust, air flow, exhaust gas temperature, etc. On the other hand, the fuel consumption of JP-S increased by 5 % compared with that of JP-8. In point of specific fuel consumption (SFC), SFC of JP-S was approximately 1.1~2.6 %, 5 % higher than that of JP-8 in ground and altitude tests respectively at the same thrust.

Study on the effect of Jet Fuel alteration on Turbine Engine Performances through Turbine Engine Test (터빈엔진시험을 통한 제트연료 변경에 따른 엔진성능 변화 연구)

  • Kim, You-Il;Min, Seong-Ki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.410-415
    • /
    • 2010
  • The engine ground and altitude tests were carried out to investigate the effect of jet fuel alteration on the performance of a small turbojet engine. JP-S was supplied 8% higher than JP-8 by fuel metering system at the same command. The employment of JP-S showed the similar starting characteristic to that of JP-8, however, difference in the ignition time and acceleration rate of engine speed due to the difference of fuel flow rate by fuel metering system was observed. In spite of jet fuel alteration, the test results yield the similar Steady-State engine performance in Net thrust, Air flow, Exhaust Gas Temperature, etc. On the other hand, the Fuel consumption of JP-S increased by 5 % compared with that of JP-8. In point of Specific Fuel Consumption (SFC), SFC of JP-S was approximately 1.1~2.6 %, 5 % higher than that of JP-8 in ground and altitude tests respectively at the same thrust.

  • PDF

A Study on Nozzle of Oil Jet using CFD (CFD를 이용한 Oil Jet의 노즐부 해석)

  • Jung, Ho-Yun;Kwon, Ji-Hyuk;Lee, Jong-Hoon;Choi, Yoon-Hwan;Lee, Yeon-Won
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.205-209
    • /
    • 2005
  • Now a days Automobiles are becoming more important in our life, the study on piston of engine is needed because, piston's cooling and lubrication of piston have an effect on the life and efficiency of engine directly. So, this study is about nozzle part of oil jet for cooling piston in the automotive engine. Piston exposes combustion gas of over $2000^{\circ}C$ and is shocked high pressure at the time of explosion shortly. Furthermore strong friction occurs by high speed rotation. The cooling system is considered from oil jet to piston. The previous system cooled the lower part of piston only. So, efficiency was low. To improve this system, make the oil gallery in the piston, and oil flows into the gallery. The value of oil flow rate into the gallery is important. Consequently, the point of this study is the research of investigation of flow characteristics for variable Re number. This study has been modelled by a commercial CFD code FLUENT, allowing to assess its validity

  • PDF

Performance Analysis of the Propulsion System for the Combined Rotorcraft (복합형 로터항공기의 동력장치 성능해석 연구)

  • Jo, Hana;Choi, Seongman;Park, Kyungsu;Yang, Gyaebyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.6
    • /
    • pp.83-90
    • /
    • 2017
  • Performance analysis of the turboshaft engines for combined rotorcraft was executed. A tip jet and a ducted fan aircraft were selected for combined rotorcraft application. Gasturb 12 software was used for turboshaft engine performance analysis. In the results, maximum required power for the tip jet engine is about 1,600 hp class and maximum required power for the ducted fan engine is about 1,000 hp class at the required aircraft mission. This is due to the additional power of the auxiliary compressor to get a bleed air mass flow rate for the tip jet operation. At the same time, fuel consumption of the tip jet aircraft is 2.8 times larger than ducted fan case. Therefore ducted fan type aircraft is more efficient than tip jet aircraft in terms of fuel economy.

Unsteady Flow Analysis of Oil Jet for Cooling the Piston (피스톤 냉각용 오일제트 비정상 유동 해석)

  • Kwon, Ji-Hyuk;Lee, Yeon-Won;Kim, Jae-Wan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.1-7
    • /
    • 2008
  • In order to enhance the performance of an automotive engine, many researchers have been carried out. An oil jet cooling a piston is one of important parts for engine performance. Therefore, the efficient cooling system of an oil jet is needed. In this paper, unsteady flow analysis of the oil jet which consists of a check valve and a nozzle has been accomplished. And the reaction between mass flow rate and ball movement was also investigated.

The development of small water-jet propulsion for 150HP grade inboard type (150마력급 선내형 소형 워터제트 추진시스템 개발)

  • Lee, Joong-Seop;Lee, Chi-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.246-252
    • /
    • 2014
  • This study is on the development of 150PS inboard type of compact water jet propulsion system. The water jet is composed of intake, impeller, diffuser, reverse bucket and main shaft. Components of water jet have been manufactured through precision processing after sand casting. Development of water jet propelled engine has been finally completed by processes which are design, production and inspection on each component. The water jet performance characteristics show that 0.29 m3/s of maximum flow rate and 37 m/s of flow velocity have been secured in the ground test pool. Field test was performed by 21ft test ship that water jet propulsion equipment developed in this study was installed. As a result, the weight of hull, engine and other parts of the ship has been almost 1.2 ton and 45 km/h of maximum sailing speed has been recorded with 3700 rpm of engine in the domestic coast test.

Research Activity on Rocket-Ramjet Combined-cycle Engine in JAXA

  • Takegoshi, Masao;Kanda, Takeshi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.460-468
    • /
    • 2008
  • Recent activities on the scramjet and rocket-ramjet combined-cycle engine of Japan Aerospace Exploration Agency(JAXA) are herein presented. The scramjet engines and combined-cycle engines have been studied in the world and JAXA has also studied such the engines experimentally, numerically and conceptually. Based on the studies, 2 to 3 m long, hydrogen-fueled engine models were designed and tested at the Ramjet Engine Test Facility(RJTF) and the High Enthalpy Shock Tunnel(HIEST). A scramjet engine model was tested in Mach 10 to 14 flight condition at HIEST. A 3 m long scramjet engine model was designed to reduce a dissociation energy loss in a high temperature condition. Drag reduction by a tangential injection and two ways of a transverse fuel injection were examined. Combustor model tests at three operating modes of the combined-cycle engine were conducted, demonstrating the combustor operation and producing data for the engine design at each mode. Aerodynamic engine model tests were conducted in a transonic wind tunnel, demonstrating the engine operation in the ejector-jet mode. A 3 m long combined-cycle engine model has been tested in the ejector-jet mode and the ramjet mode since March 2007. Carbon composite material was examined for application to the engines. Production of the cooling channel on a nickel alloy plate succeeded by the electro-chemical etching.

  • PDF

Summary of the engine system research using small jet engines in JAXA

  • Futamura, Hisao;Okai, Keiichi;Koh, Masaharu;Mizuno, Takuya;Yanagi, Ryoji
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.763-767
    • /
    • 2004
  • A possible and practical engine system research method is proposed. Varieties of objectives of the engine component and system technology developments are fulfilled by the small scale rig and engine demonstration. Some research applications of small jet engines in National Aerospace Laboratory of Japan (NAL) are presented together with historical overview.

  • PDF

Fuel Flow Control of Turbojet Engine Using the Fuzzy PI+D Controller (퍼지 PI+D 제어기를 이용한 터보제트 엔진의 연료유량 제어)

  • Jung, Byeong-In;Jie, Min-Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.3
    • /
    • pp.449-455
    • /
    • 2011
  • In this paper, Proposed controller prevent compressor surge and reduce the acceleration time of the fuel flow control system for turbo-jet engine. Turbo-jet engine controller is designed by applying fuzzy PI+D control algorithm and make an inference by applying Mamdani's inference method and the defuzzification using the center of gravity method. Fuzzy inference results are used as the fuel flow control inputs to prevent compressor surge and flame-out for turbo-jet engine and the controller is designed to converge to the desired speed quickly and safely. Using MATLAB to perform computer simulations verified the performance of the proposed controller.