• Title/Summary/Keyword: Jet pump

Search Result 102, Processing Time 0.033 seconds

Three-Dimensional Trajectory of a Fluid Particle in Air with Wind Effects and Air Resistance (공기 저항과 바람의 영향을 고려한 대기에서의 유체입자의 3차원 궤적)

  • 이동렬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.797-808
    • /
    • 2001
  • Three-dimensional trajectory of fluid particle is simulated by a particle motion, which is able to examine the influences of changes in the several parameters. To calculate the trajectory of a particle, the Runge-Kutta method was utilized. The use of a projectile of particles for the trajectory of liquid jet has been shown to be useful to estimate the influence of different operating parameters such as best particle diameter, density of liquid body, initial take-off velocity, wind velocity, cross wind velocity, take-off angle, and base angle for a released flow from the nozzle. The results give the trajectories of various types of particle of body and at different elevations, base angles, wind velocities and densities of liquid body. The trajectories in a vacuum show that air resistances decreases both the distance and the maximum height of a projectile, and also explain that the termination time is also reduced in air. In addition, the maximum distance in the x direction was obtained with take-off angles from 30 degrees to 45 degrees in still air and the projectile of particles was highly effected by wind and cross wind. Clearly, a particle has to be so positioned as to take the optimum possible advantage of the wind if the maximum distances is requested. The wind astern increased the maximum distances of x direction compared with the wind ahead. Finally, it is possible to optimize the design of pump by using these results.

  • PDF

Manufacturing of Ag Nano-particle Ink-jet Printer and the Application into Metal Interconnection Process of Si Solar Cells (Si 태양전지 금속배선 공정을 위한 나노 Ag 잉크젯 프린터 제작 및 응용)

  • Lee, Jung-Tack;Choi, Jae-Ho;Kim, Ki-Wan;Shin, Myoung-Sun;Kim, Keun-Joo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.2
    • /
    • pp.73-81
    • /
    • 2011
  • We manufactured the inkjet printing system for the application into the nano Ag finger line interconnection process in Si solar cells. The home-made inkjet printer consists of motion part for XY motion stage with optical table, head part, power and control part in the rack box with pump, and ink supply part for the connection of pump-tube-sub ink tanknozzle. The ink jet printing system has been used to conduct the interconnection process of finger lines on Si solar cell. The nano ink includes the 50 nm-diameter. Ag nano particles and the viscosity is 14.4 cP at $22^{\circ}C$. After processing of inkjet printing on the finger lines of Si solar cell, the nano particles were measured by scanning electron microscope. After the heat treatment at $850^{\circ}C$, the finger lines showed the smooth surface morphology without micropores.

Study of Wake Control by Blowing and Suction in Front of the Vertical Fence (수직벽 전방에서의 흡입/토출을 이용한 후류제어 연구)

  • Choi, Young-Ho;Kim, Hyoung-Bum
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.1
    • /
    • pp.47-53
    • /
    • 2008
  • The effect of periodic blowing and suction of upstream flow on the separated shear flow behind the vertical fence was experimentally investigated. The fence was submerged in the turbulent shear flow and DPIV method was used to measure the instantaneous velocity fields around the fence. Periodic blowing and suction flow was precisely generated by the syringe pump. Spanwise nozzle made 2D planar periodic jet flow in front of the fence and the effect of frequency and maximum jet velocity was studied. From the results, the reattachment length can be reduced by 60% of uncontrolled fence case under the control.

A Study on Optimal design of T-50 Aircraft FFP system through a case of F-16 Aircraft (최신 전투기 사례를 통한 T-50 FFP 시스템 최적 설계 연구)

  • Nam, Yong-seog;Kim, Tae-hwan;Jeong, Nyeon-su
    • Journal of Aerospace System Engineering
    • /
    • v.4 no.1
    • /
    • pp.10-14
    • /
    • 2010
  • The Fuel system of T-50 Advanced Trainer is equipped with two boost pump and fuel flow proportioner for feeding fuel to turbo jet engine. when an unexpected failure occurs, they can feed the fuel to turbo jet engine which fuel quantity required. fuel quantity control method is applied for minimizing the center of gravity change. and fuel quantity control method is controlled by FQMS(Fuel Quantity Measuring System) and FFP(Fuel Flow Proportioner). This paper presents life cycle extension plans of FFP hydraulic motor by design improvements of connecting and arrangement of pipe comparing with KF-16.

  • PDF

Design of Embedded System with Radio Control Method for Small Jet Engine Fuel Pump (소형제트엔진연료펌프의 무선제어방식을 적용한 임베디드시스템 고안)

  • Kyu-Jun Yu;Byeong-Gook Kwon;Gi Hun-Song;Jun-Hee Lee;Yoon-Suk Oh;Hyeong-Jun Jeon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.105-106
    • /
    • 2023
  • 소형제트엔진은 주로 연구, 실험, 교육 등의 목적으로 사용되고 있다. 이러한 소형제트엔진은 고도가 높고 고속으로 비행하는 드론에 추력 발생 장치로서의 중요한 역할을 수행할 수 있다. 그러나 엔진의 실질적인 활용을 위해서는 기존의 유선으로 구성된 컨트롤러를 무선으로 제어할 수 있는 방식으로 재구성하는 것이 필요하다. 이 중에서도 연료펌프의 무선제어시스템이 우선적으로 개발되어야만 다른 부분에 대한 무선제어개발이 가능해질 것이다. 본 논문에서는 소형 제트 엔진의 연료 펌프를 무선으로 제어할 수 있는 방식을 적용한 임베디드 시스템의 구성과 방식에 대해 제안하고 있다.

  • PDF

Cooling Performance Study of a Impinging Water Jet System with Heat Sink for High Power LEDs (분사냉각모듈 내에 부착된 히트싱크에 따른 고출력 LED의 냉각성능에 관한 연구)

  • Ku, G.M.;Kim, K.;Park, S.H.;Choi, S.D.;Heo, J.W.
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.152-158
    • /
    • 2013
  • The purpose of this study is to investigate cooling performance of high power LEDs from 100 to 200 W class by using a jet impingement cooling module. The numerical analysis of forced convection cooling inside cooling module is carried out using a multi-purpose CFD software, FLUENT 6.3. In the experiments, the LED cooling system consists of jet impingement module, heat exchanger, water reservoir, and pump. In the present study, the cooling performance of jet impingement cooling module is investigated to determine the effect of the heat sink types on the impinging surface, the space and length of fins. Numerical and experimental studies show the reasonable agreement of LED metal PCB temperature between those results and give the optimized design parameters such as the space of fin and the length of fin. Also, the pin fin type of heat sink is found to be more efficient than the plate type heat sink in jet impingement cooling.

Reliability Analysis on Fuel System for the Smart UAV (스마트 무인기 연료공급시스템의 신뢰도 분석)

  • Kong Chang-Duk;Kang Myoung-Cheol;Lee Chang-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.233-236
    • /
    • 2005
  • In this study, the fundamental design procedure for the Smart UAV fuel supply system was set up, and the preliminary design was performed to meet the vehicle system requirements. The fuel system layout was determined through consideration of vehicle system requirements, and then fuel tank layout, design of components such as booster pump, jet pump, pipe, vent system, weight estimation, etc. were carried out.

  • PDF

Experimental Study for the Prevention of Cavitation Damage in the Diesel Fuel Injection Pumps (디젤엔진 연료분사펌프 캐비테이션 손상 방지를 위한 실험적 연구)

  • Kim, Dong-Hun;Park, Tae-Hyung;Heo, Jeong-Yun;Ryu, Seung-Hyup;Kang, Sang-Lip
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.10a
    • /
    • pp.61-61
    • /
    • 2011
  • Cavitation phenomena during the injection process of the conventional fuel injection pump for a medium-speed diesel engine can cause surface damage with material removal or round-off on the plunger and barrel port and may shorten their expected life time. An experiment of flow visualization was carried out to investigate the main cause of these cavitation damages and find the prevention method. Experimental results of flow visualization show that these damages are mainly affected by fountain-like cavitation and jet-type cavitation generated before and after the end of fuel delivery process and therefore the prevention method was designed to control these cavitation flows. From the visualization and endurance test, it was proved that this method can effectively prevent cavitation damages by controlling cavitation flows.

  • PDF

Preliminary Design of Fuel System for the Smart UAV (스마트 무인기 연료시스템 설계에 관한 연구)

  • Kang Myoung-Cheol;Lee Chang-Ho;Kong Chang-Duk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.5-8
    • /
    • 2004
  • In this study, the fundamental design procedure for the Smart UAV fuel supply system was set up, and the preliminary design was peformed to meet the vehicle system requirements. The fuel system layout was determined through consideration of vehicle system requirements, and then fuel tank layout, design of components such as booster pump, jet pump, pipe, vent system, weight estimation, etc. were carried out.

  • PDF

Fuel System Design of the Smart UAV (스마트 무인기 연료 시스템 설계에 관한 연구)

  • Kong Chang-Duk;Kang Myoung-Cheol;Lee Chang-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.2
    • /
    • pp.54-61
    • /
    • 2005
  • In this study, the fundamental design procedure for the Smart UAV fuel supply system was set up, and the preliminary design was performed to meet the vehicle system requirements. The fuel system layout was determined through consideration of vehicle system requirements, and then fuel tank layout, design of components such as booster pump, jet pump, pipe, vent system, weight estimation, etc. were carried out. Based on this fuel system layout, operational reliability analysis was carried out.