• Title/Summary/Keyword: Jet fan

Search Result 106, Processing Time 0.029 seconds

Aerodynamic Design Optimization of an Jet Fan using the Response Sruface Method (반응면 기법을 이용한 제트송풍기의 공력학적 수치최적설계)

  • Seo Seoung-Jin;Kim Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.635-638
    • /
    • 2002
  • In this study, three-dimensional imcompressible viscous flow analysis and optimization using response surface method are presented for the design of a jet fan. Steady, imcompressible, three-dimensional Reynolds averaged Wavier-Stokes equations are used as governing equations, and standard $k-{\varepsilon}$ turbulence model is chosen as a turbulence model. Governimg equations are discretized using finite volume method. Sweep angles are used as design variables for the shape optimization of the impeller in response surface method. The experimental points which are needed to construct response surface are obtained from the D-optimal design and finally the shape of impeller Is achieved from using a numerical optimization for the response surface which is obtained from CFD.

  • PDF

Engine room cooling system using jet pump (제트 펌프를 이용한 엔진 룸 냉각 시스템)

  • Lim, Jeong-Woo;Lee, Sang-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.162-167
    • /
    • 2000
  • Construction machinery includes an engine enclosure separated from a cooling system enclosure by a wall to reduce noise and advance cooling system performance. For this structure, however, the axial fan cannot be of benefit to the engine room, and so the temperature rise in the engine room makes several bad conditions. This paper proposes that hot air in engine room is evacuated tv secondary pipe using jet pump. This paper demonstrates the structure and the effect of jet pump and useful guideline on design of area, length, and shape of secondary pipe to maximize the effect of jet pump.

  • PDF

Experimental study of improvement of ventilation efficiency at intersection in network-form underground road tunnel (네트워크형 지하 도로터널 분기부에서의 환기효율 향상방안에 대한 실험적 연구)

  • Lee, Ho-Seok;Hong, Ki-Hyuk;Choi, Chang-Rim;Kang, Myung-Koo;Lim, Jae-Bom;Mun, Hong-Pyo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.2
    • /
    • pp.107-116
    • /
    • 2012
  • The experiment was performed to analyze the intersectional ventilation efficiency by intersection structure and Jet Fan in network-form road tunnel. For this, the size of real road tunnel was reduced by 1/45. To apply traffic inertia force when driving, blower fan was used to form an airflow in model tunnel and the intersectional efficiency was also investigated by measuring the speed at local point of the tunnel. To improve the reduction of ventilation caused by the structure character, Jet Fan was installed to optimize ventilation efficiency in tunnel.

A study on the ventilation control method of road tunnel for small vehicles (소형차 전용 도로터널의 환기기 제어방안에 대한 연구)

  • Ryu, Ji-Oh;Lee, Hu-Young;Chang, Ji-Don
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.6
    • /
    • pp.749-762
    • /
    • 2019
  • In recent years, in urban areas, underground of roads are being promoted in order to resolve traffic congestion and to secure green spaces, and due to the low ratio of large vehicles, they are planned or constructed as road tunnels for small cars only. In addition, the tunnels being built in the city is a tendency to be enlarged to play the role of main roads. Accordingly, the capacity of the ventilation system is increasing and various ventilation methods are required, and the importance of maintenance after the completion of the tunnel such as the operating cost of the ventilation system is emphasized. Therefore, the need for optimization of the operation stage for reducing the power consumption of the ventilation system and the study of the ventilation system operation control logic is increasing. In this study, the study on the necessity of the optimization of operation stage and control logic of the ventilation system was carried out to realize the energy-saving operation for the small car only passing through tunnels which is applied of ① jet fan and combination ventilation system (② jet fan + air purifying equipment, ③ jet fan + vertical shaft, ④ jet fan + supply air semi-transverse). As a result of this study, there can be various operating combinations in the case of the combined ventilation system, and even though the amount of ventilation air is the same, the operating power varies greatly according to the operating combinations. It was found that operating the axial fan first rather than the jet fan first operation method has an effect on power saving.

A numerical study on the ventilation characteristics of rainfall in road tunnel (강우변화를 고려한 도로터널의 환기특성에 관한 수치해석)

  • Lee, Ho-Hyung;Lee, Seung-Chul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.341-351
    • /
    • 2015
  • When rainfall occurred on road tunnel, that is likely to have influence upon ventilation force in the tunnels but the tunnels ventilation system did not consider factors of rainfall. Thus, this study investigated effects of rainfall upon ventilation force in the tunnels at no rainfall and changing of rainfall by 3 dimensional numerical method. Flow rate into road tunnels decreased as many as 52.34% at rainfall of 150 mm/hr, and pressure drop of road tunnel between entrance and exit decreased as many as 22.22%, so that rainfall had influence upon ventilation force in the tunnel. The number of necessary jet fan in road tunnels is 12 at no rainfall but, when rainfall of 80 mm/hr on road tunnels, the number of necessary jet fan in road tunnels is 16, when rainfall of 150 mm/hr on road tunnels, the number of necessary jet fan in road tunnels is 17. So, factor of rainfall should be considered at estimation of ventilation system of road tunnel.

Analysis of Interaction Between Recirculating Flow Near The Jet Fan and The Backlayer of Smoke in a Road Tunnel (도로터널에서 제트팬 근처의 재순환유동과 연기 역류현상의 상호작용 분석)

  • Kim, Chang-Kyun;Ryu, Jin-Woong;Kim, Sung-Joon
    • Journal of Industrial Technology
    • /
    • v.25 no.A
    • /
    • pp.191-201
    • /
    • 2005
  • A numerical analysis was done for a tunnel fire in a 1000m road tunnel. A cartesian coordinate was adopted to make a computational grid sytem which has 448,000 computational cells. A transient flow phenomena in the tunnel was simulated by the commercial code of PHEONICS from the ignition of fire to 600 seconds by the interval of 100 seconds. Total computational time of about 44 hours was required to get a convered solution in each time step. The purpose of this research is to analyze of the backlayering pheonomena and recirculation flow in a tunnel. The compuational results say that the backlayering does not happens near the fire of vehicle in this case because the vehicle fire is located at the outside of recirculation zone of flow ocuured near the jet fan. In this research, onset of backlayering pheonomena could be escaped if jet fan is set 95m in front of the the fire of vehicle.

  • PDF

The Study of Jet Fan Control Logic for Longitudinal Ventilation in Road Tunnel (젯트팬 종류식 터널의 퍼지응용 제어로직에 관한 연구)

  • 유지오;남창호;신현준
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.8
    • /
    • pp.763-770
    • /
    • 2000
  • In tunnel ventilation, the Purpose of ventilation control is to keep the required pollution level with minimum consumption of energy But tunnel ventilation has large disturbances caused by discharge of pollutants, traffic forces especially strong for longitudinal ventilation. Hence in this paper, the tunnel ventilation control logic applying fuzzy control theories is proposed and the simulation program of tunnel ventilation control is developed. The characteristics of longitudinal ventilation with jet fans are estimated and the effect of the proposed tunnel ventilation control is verified by the simulation program.

  • PDF

Numerical Analysis to Predict Air Flow Phenomena in a Road Tunnel (도로 터널내의 공기유동 양상을 예측하기 위한 수치해석)

  • Choi, In-Su;Park, Byung-Duck;Youn, Il-Ro
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.4
    • /
    • pp.313-320
    • /
    • 2002
  • A 2-dimensional $k-{\varepsilon}$ numerical model was developed to explore the effects of vehicle movement, jet fan and wind speed for the ventilation of road tunnels. To consider the temperature distribution in the tunnel, the energy equation was solved with a source term of the energy exhausted from vehicles. Although the tunnel ventilation can be made by the piston effect of vehicle movement, an additional ventilation is necessary when a head wind is existing. Jet fans may assist the air flow in the tunnel. However, more efficient ventilation system should be necessary, because the exhaust gas from vehicles flow along the road surface and it cannot be diffused in the longitudinal tunnel.

  • PDF

Effect of Re-ventilated Fan Capacity on Road Tunnel Fire (제트팬 용량이 도로터널 화재에 미치는 영향)

  • Kim, Kang-Hee;Cho, Mok-Lyang;Kim, Tae-Kwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.204-210
    • /
    • 2019
  • In case of a fire inside a tunnel, unlike ordinary roads, it is very difficult for a driver to obtain visibility, and a large accident is highly likely to occur. In this study, the smoke behavior, visible distance, and CO concentration of a jet fan were analyzed using the NIST fire simulation (FDS). All analyses were set to HRRPUA (Heat Release Rate Per Area) 3.6MW/m and all the analysis times were set to 600s. In all analyses by CFD, the results were confirmed at y=30m and y=110m, and smoke behavior analysis, visible range analysis, and carbon monoxide concentration were confirmed according to the diameter and flow rate. As the size and flow rate of the jet fan increased, the visibility distance was high at y=30m, and the concentration of carbon monoxide was also confirmed to be 0 ppm. Therefore, proper setting of the jet fan diameter and flow rate will be an excellent solution for fires in tunnels, and taking refuge at upstream area of a re-ventilated fan can reduce the number of casualties.

Analysis of Smoke Control According to Jet Fan Location in Straight Long Tunnel (제트 팬 설치 위치에 따른 직선터널 내의 제연해석)

  • Byun, Ju-Suk;Lim, Hyo-Jae;Kang, Shin-Hyung;Lee, Jin-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.9
    • /
    • pp.662-668
    • /
    • 2007
  • In this study, jet fans are installed with 4 cases in the straight long tunnel; inlet-side setup, middle-side setup, outlet-side setup, and dispersion setup. A bus is selected as fired car, of which fire size is 20MW. And fired car locates at 100m, 700m, 1500m position from tunnel inlet, respectively. FLUENT, commercial finite-volume code, is used to analyze the performance. The velocity profile, $CO_2$ concentration, temperature distribution are examined for analysis. Performance of smoke control is compared by the backlayering length. Consequently, inlet-side setup of jet fans is a little more efficient than other cases considering the fire occurrence frequency in tunnel.