• Title/Summary/Keyword: Jet Width

Search Result 151, Processing Time 0.034 seconds

The Effect of Swirl on the Structure of Concentric Laminar Jet Diffusion Flame (동축분류 층류제트 확산화염의 구조에 미치는 선회의 영향)

  • 김호영;민성기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.3
    • /
    • pp.578-588
    • /
    • 1992
  • In order to predict the effect of swirl on the structure of concentric laminar jet diffusion flame, present study examined the effect of swirl on the flame characteristics by numerical numerical analysis through theoretical model. The theoretical model has been developed for the co-axial laminar jet flame such that the fuel and air are supplying with swirl through inner and outer co-axial tube respectively. For the parametric study, swirl number, Reynolds number of fuel and air and directions of swirl are chosen as important parametes. The results of study show that the flame with width and shorter length is formed by larger swirl number. The important factor of the flame shape is the recirculating zone formed around jet axis near the exit of nozzle. In case of weak swirl, the effect of directions of swirl is not appeared. However, for the strong swirl, the flame with shorter length are appeared in case of counter-swirl compared with the case of co-swirl.

Augmentation of Heat Transfer by two Dimensional Impinging Air Jet (Effect of Square Rib Width) (2차원(次元) 충돌분류(衝突噴流)의 열전달(熱傳達) 증진(增進)에 관(關)한 실험적(實驗的) 연구(硏究) (사각(四角) Rib폭(幅)의 효과(效果)))

  • Lee, Y.H.;Rhee, K.S.;Seo, J.Y.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.4
    • /
    • pp.350-356
    • /
    • 1988
  • The impinging air jet system is still being used in the various fields with its inherent merits, that is, the easiness in engineering application and high heat transfer coefficients at stagnation point. The purpose of this study is augmentation of heat transfer without additional power in the rectangular air jet which impinges vertically to the heating surface. As a method of passive heat transfer augmentation in a two-Dimensional impinging jet, the transverse-repeated surface roughness of square cross-section is used. This paper deals with the experimental study on the characteristics of heat transfer at the x-direction in between nozzle exit and heating surface of flat plate, and that of ribbed plate. And this study also investigates the effect of square rib widths. The integral average heat transfer coefficient of ribbed plate is about 2.2 times larger than that of flat plate.

  • PDF

Recent Advances in the Ink-Jet Printing Ceramic Tile Using Colorant Ceramic-ink (고화도 발색세라믹잉크를 이용한 잉크젯프린팅 도자타일 연구동향)

  • Kim, Jin-Ho;Noh, Hyung-Goo;Kim, Ung-Soo;Cho, Woo-Suk;Choi, Jung-Hoon;Lee, Yong-Ouk
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.498-503
    • /
    • 2013
  • Over the past decade, the feasibility of using ink-jet printing for the decoration of porcelain tiles has been explored, and significant advances have been made regarding the technologies underlying printing system and materials. An ink-jet printing system for porcelain tiles has many advantages compared with a conventional printing system, including the following: (1) it is a digital process; (2) it uses non-contact printing; (3) it allows random image generation; (4) it is a highly efficient process (reduced production cost); (5) it offers massive and continuous production; and (6) it uses inorganic pigment colorants. For these reasons, ink-jet printing systems for porcelain tiles have been commercialized and are at present rapidly spreading toceramics-leading countries such as Spain, Italy, China and Japan. We also developed a proprietary system involving a piezo-electric drop-on-demand method and an ink-circulation step. The resolution of this system is greater than 360 dpi after a heat treatment and the maximum printable width is 600 mm, even when setting the printing head unit with four digital colors (cyan, magenta, yellow, and black). In addition, we systematically developed ceramic colorant-containing inks and tile-printing technology applicable to our ink-jet printing system.

Experimental Investigations into the Precision Cutting of High-pressured Jet for Thin Multi-layered Material (다층박판재료의 초고압 젯 정밀가공에 대한 실험적 연구)

  • Park, Kang-Su;Bahk, Yeon-Kyeung;Lee, Jung-Han;Lee, Chae-Moon;Go, Jeung-Sang;Shin, Bo-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.7
    • /
    • pp.44-50
    • /
    • 2009
  • High-pressured jetting is now widely used in the advanced cutting processes of polymers, metals, glass, ceramics and composite materials because of some advantages such as heatless and non-contacting cutting. Similarly to the focused laser beam machining, it is well known as a type of high-density energy processes. High-pressured jetting is going to be developed not only to minimize the cutting line width but also to achieve the short cutting time as soon as possible. However, the interaction behavior between a work piece and high-velocity abrasive particles during the high-pressured jet cutting makes the impact mechanism even more complicated. Conventional high-pressured jetting is still difficult to apply to precision cutting of micro-scaled thin work piece such as thin metal sheets, thin ceramic substrates, thin glass plates and TMM (Thin multi-layered materials). In this paper, we proposed the advanced high-pressured jetting technology by introducing a new abrasives supplying method and investigated the optimal process conditions of the cutting pressure, the cutting velocity and SOD (Standoff distance).

A Study of Micro Stencil Printing based on Solution Atomization Process (용액 미립화공정 기반의 마이크로 스텐실 프린팅에 관한 연구)

  • Dang, Hyun Woo;Kim, Hyung Chan;Ko, Jeong Beom;Yang, Young Jin;Yang, Bong Su;Choi, Kyung Hyun;Doh, Yang Hoi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.6
    • /
    • pp.483-489
    • /
    • 2014
  • In this study, experiments were conducted for micro pattern printing to combine solution atomization process and stencil printing based on electrospray deposition. The stencil mask fabricated by etching the photosensitive glass placed below 0.3 mm distance to substrate has 100 um line width. The process parameters of electrospray deposition system for the atomization of the solution are applied voltage and supply flow rate of the solution. Meniscus angle of cone-jet was optimized by varying the supply flow rate from 0.3 ml/hr to 0.7 ml/hr. Voltage condition was verified having symmetric cone-jet angle and no pulsation at 8.5 kV applied voltage. In addition, a number of micro patterns are printed using a single 1 step process by solution atomization process. Variable line width of approximate 100 um was confirmed by changing conditions of solution atomization regardless of the pattern size of stencil mask.

Arc efficiency and kerf width in plasma arc cutting process (플라즈마 절단공정에서의 아아크 효율과 절단폭)

  • 노태정;나석주
    • Journal of Welding and Joining
    • /
    • v.5 no.1
    • /
    • pp.23-33
    • /
    • 1987
  • Plasma arc cutting is a fusion cutting process in which a gas constricted arc is employed to produce high temperature, high velocity jet at the workpiece. Even though the plasma arc cutting has been wid¬ely used in the industry, very little work has been done on the analysis of the process. In this paper, the kerf width was numerically analyzed by soving the temperature distribution in base metal under consideration of the latent heat effect. In modelling the heat flow problem, the heat intensity of the plasma arc was assumed to have a Gaussion distribution in the transverse direction and expone¬ntially decreasing in the thickness direction. The thermal efficiency and the heat input ratio of the top surface were experimentally deterimned for various thickness and cutting conditions, and used in numerical calculation of the kerf width. The experimental results were in eonsiderabely good agreement with the theoretically predicted kerf width.

  • PDF

A numerical simulation on the effect of hole geometry for film cooling flow (홀 형상이 막 냉각 유동에 미치는 효과에 대한 수치 해석적 연구)

  • Lee, Jeong-Hui;Choe, Yeong-Gi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.7
    • /
    • pp.849-861
    • /
    • 1997
  • In this study, the effect of hole geometry of the cooling system on the flow and temperature field was numerically calculated. The finite volume method was employed to discretize the governing equation based on the non-orthogonal coordinate with non-staggered variable arrangement. The standard k-.epsilon. turbulence model was used and also the predicted results were compared with the experimental data to validate numerical modeling. The predicted results showed good agreement in all cases. To analyze the effect of the discharge coefficient for slots of different length to width, the inlet chamfering and radiusing holes were considered. The discharge coefficient was increased with increment of the chamfering ratio, radiusing ratio and slot length to width and also the effect of radiusing showed better result than chamfering in all cases. In order to analyze the difference between the predicted results with plenum region and without plenum region, the velocity profiles of jet exit region for a various flow conditions were calculated. The normal velocity components of jet exit showed big difference for the low slot length to width and high blowing rate cases. To analyze the flow phenomena injected from a row of inclined holes in a real turbine blade, three dimensional flow and temperature distribution of the region including plenum, hole and cross stream with flow conditions were numerically calculated. The results have shown three-dimensional flow characteristics, such as the development of counter rotating vortices, jetting effect and low momentum region within the hole in addition to counter rotating vortex structure in the cross stream.

Flow Structures Around a Freely-falling, Rectangular Cylinder (자유 낙하하는 사각 실린더 주위의 유동 구조)

  • Jeon, Chung-Ho;Lee, Chang-Yeol;Yoon, Hyun-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.8-15
    • /
    • 2010
  • The flow around a two-dimensional, rectangular cylinder that is freely falling in a channel was simulated using the immersed boundary method with direct forcing to determine the interactions between the fluid and the structure. The results of the present study were in good agreement with previous experimental results. Regardless of the H/L ratio (where H and L are the height and width of the rectangular cylinder, respectively), the flow structures had essentially the same pattern as the two symmetrical circulations that form about the horizontal center of the cylinder, with those centers located at each lateral position near the wake. When the cylinder approaches very close to the bottom, a jet-like flow appeared between the bottom of the rectangular cylinder and the channel. When the jet-like flow goes through the channel, surrounding fluids are sucked into this jet, forming the secondary vortices.

Effect of Oxygen Enriched Air on the Combustion Characteristics in a Coaxial Non-Premixed Jet (II) - Flame Structure and Temperature Distribution - (산소부화공기가 동축 비예혼합 제트의 연소특성에 미치는 영향 (II) - 화염의 구조와 온도분포 -)

  • Kwark, Ji-Hyun;Jeon, Chung-Hwan;Jang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.2
    • /
    • pp.223-229
    • /
    • 2004
  • Combustion using oxygen enriched air is known as a technology which can increase thermal efficiency due to increase of the flame temperature. Flame shapes, schlieren photos, OH radical chemiluminescence and local flame temperature were examined as a function of OEC(Oxygen Enriched Concentration) in a coaxial non-premixed jet. With increase of OEC, flame length and width decreased, but its brightness increased significantly, and the size of vortices in the flame also increased. Especially, the reaction around the flame surface became active. The strong OH intensity appeared to be made and moved from middle stream to upper one with increase of OEC, which shows combustion reaction in the upper stream becomes more dominant In addition, the temperature distributions of the flames showed similar tendency with OH radical intensities. A flame with high temperature and strong stability was obtained with increasing OEC of the coflow.