• Title/Summary/Keyword: Jet Structure

Search Result 492, Processing Time 0.033 seconds

A Study on the Combustion Characteristics of Annular Swirl Jet (環狀旋回噴流의 燃燒特性에 관한 硏究)

  • 이창식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.4
    • /
    • pp.410-416
    • /
    • 1983
  • This study presents the combustion characteristics and flame structure of annular swirling flow when there were changes the equivalence ratio and swirl number of swirling jet of fuelair mixture. The conclusions of this study are as follows; During the investigations in which the change of equivalence ratio and swirl number were studied, three basic shapes of flame were observed in this study. Visible flame lengths of swirling jet results in the decrease with increasing of swirl number and air-fuel ratio of mixture. Radial distribution of flame temperature with strong swirl is higher than that of weak swirl at the same equivalence ratio of mixture. The angle of spread of the annular jet increases with the increase of swirl number. When the swirl intensity is increased in a jet, the decay of concentration of carbon dioxide is decreased with the distance from nozzle exit of burner.

NUMERICAL INVESTIGATIONS OF SUPERSONIC JET IMPINGEMENT ON A FLAT WALL IN A CONFINED PLENUM (화염배출 출구면적 변화에 대한 수직발사관 내부 초음속 충돌유동의 수치적 해석)

  • Lee K. S.;Hong S. K.;Ahan C. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.281-285
    • /
    • 2005
  • Viscous solutions of supersonic jet impinging on a flat wall in a confined plenum are simulated using three-dimensional Navier-Stokes solver. A confined plenum was designed for simulating the missile launch and analyzing the behavior of the exhaust plume, which were accompanied by complex flow interactions with shock and boundary layer. Concerns of this paper are to show accurate simulation of internal flow in confined plenum and to demonstrate the jet flow structure when the jet interacts with a small opening on the side. Objectives of this numerical simulation are to understand the effect of changing the plume exit area of the plenum. Pressure and temperature rise at certain position in the plenum are traced and compared with test data.

  • PDF

Liftoff mechanisms in hydrogen turbulent non-premixed jet flames (수소 난류확산화염에서의 부상 메커니즘에 대한 연구)

  • Oh, Jeong-Seog;Kim, Mun-ki;Choi, Yeong-Il;Yoon, Young-Bin
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.7-12
    • /
    • 2007
  • To reveal the newly found liftoff height behavior of hydrogen jet, we have experimentally studied the stabilization mechanism of turbulent, lifted jet flames in a non-premixed condition. The objectives of the present research are to report the phenomenon of a liftoff height decreasing as increasing fuel velocity, to analyse the flame structure and behavior of the lifted jet, and to explain the mechanisms of flame stability in hydrogen turbulent non-premixed jet flames. The velocity of hydrogen was varied from 100 to 300m/s and a coaxial air velocity was fixed at 16m/s with a coflow air less than 0.1m/s. For the simultaneous measurement of velocity field and reaction zone. PIV and OH PLIF technique was used with two Nd:Yag lasers and CCD cameras. As results, it has been found that the stabilization of lifted hydrogen diffusion flames is related with a turbulent intensity, which means that combustion occurs where the local flow velocity is valanced with the turbulent flame propagation velocity.

  • PDF

Simulation of Jet Plume Impinging onto a Duct (닥트에 분사되는 제트플륨의 수치계산)

  • Hong Seung-Gyu;Lee Gwang-Seop;Baek Dong-Gi
    • Journal of computational fluids engineering
    • /
    • v.2 no.2
    • /
    • pp.44-50
    • /
    • 1997
  • Accurate simulation of jet plume exhausting into the open space as well as onto the opposing wall is of interest both numerically and physically; the latter, from a system designer's point of view. In the current work, Navier-Stokes computation is undertaken to capture the flow pattern of a supersonic jet impinging onto a rectangular duct which deflects the vertical jet horizontally. Of particular interest are the flow structure in the jet exhaust area, pressure pattern and the magnitude of pressure force at the bottom wall. Usefulness of present characteristic boundary condition applied at the exiting plane of the duct is demonstrated by capturing such complex flow structures for different lengths of the deflection duct.

  • PDF

Ballistic Resistance of an Armor Ceramic Structure against a Shaped Charge Jet As a Function of Penetration Depth

  • Hyunho Shin;Lee, Chang-Hyun;Wan Sung
    • The Korean Journal of Ceramics
    • /
    • v.5 no.3
    • /
    • pp.270-277
    • /
    • 1999
  • The ballistic capability of an alumina-rich oxide armor ceramic against a shaped jet was characterized as a function of penetration depth in a layered target structure. The penetration resistance of the ceramic, based upon the determination of penetration velocity, was not equally realized throughout the depth of penetration. It was abnormally low at an early stage of penetration, followed by a sudden increase to reach ~16GPa thereafter. There was no apparent change in such a profile with respect to the lateral size of the specimen. Based upon 2-D flash x-ray radiography and 3-D Hull code simulation, the feasibility of forming a pressure-induced predamnaged zone in front of the jet tip was speculated to foster an increased penetration velocity in the initial stage penetration, resulting in the diminished penetration resistance. The disappearance of such a predamaged zone with penetration was interpreted to restore the resistance of the ceramic in the later penetration stage.

  • PDF

A MAGNETOHYDRODYNAMIC MODEL FOCUSED ON THE CONFIGURATION OF MAGNETIC FIELD RESPONSIBLE FOR A SOLAR PENUMBRAL MICROJET

  • Magara, Tetsuya
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.49.2-49.2
    • /
    • 2010
  • In order to understand the configuration of magnetic field producing a solar penumbral microjet that was recently discovered by Hinode, we performed a magnetohydrodynamic simulation reproducing a dynamic process of how that configuration is formed in a modeled solar penumbral region. A horizontal magnetic flux tube representing a penumbral filament is placed in a stratified atmosphere containing the background magnetic field that is directed in a relatively vertical direction. Between the flux tube and the background field there forms the intermediate region in which the magnetic field has a transitional configuration, and the simulation shows that in the intermediate region magnetic reconnection occurs to produce a clear jet- like structure as suggested by observations. The result that a continuous distribution of magnetic field in three-dimensional space gives birth to the intermediate region producing a jet presents a new view about the mechanism of a penumbral microjet, compared to a simplistic view that two field lines, one of which represents a penumbral filament and the other the background field, interact together to produce a jet. We also discuss the role of the intermediate region in protecting the structure of a penumbral filament subject to microjets.

  • PDF

An Analysis of Supersonic Jet Noise with a Converging-Diverging Nozzle (C-D 노즐을 고려한 초음속 제트 소음 해석)

  • Kim Yong Seok;Lee Duck Joo
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.389-392
    • /
    • 2001
  • To investigate the generation mechanism of the shock-associated noise, an underexpanded supersonic jet from an axisymmetic nozzle is simulated under the conditions of the Nozzle exit Mach number of 2 and the exit pressure ratio of Pe/Pe =1.5. The present simulation is performed based on the high-order accuracy and high-resolution ENO (Essentially Non-Oscillatory) scheme to capture the time-dependent flow structure representing the sound source. It was found that the shock-associated noise is generated by the weak interaction between the downstream propagating large turbulence structures of the jet flow and the quasi-periodic shock cell structure during the one is passing through the other. The directivity of propagating waves to the upstream is clearly shown in the visualization of pressure field. It is shown that the present calculation of the centerline pressure distribution is in fare agreement with the experimental data at the location of first shock cell.

  • PDF