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Simulation of Jet Plume Impinging onto a Duct
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Accurate simulation of jet plume exhausting into the open space as well as onto the

opposing wall is of interest both numerically and physically; the latter, from a system designer’s

point of view. In the current work, Navier-Stokes computation is undertaken to capture the flow

pattern of a supersonic jet impinging onto a rectangular duct which deflects the vertical jet

horizontally. Of particular interest are the flow structure in the jet exhaust area, pressure pattern

and the magnitude of pressure force at the bottom wall. Usefulness of present characteristic

boundary condition applied at the exiting plane of the duct is demonstrated by capturing such

complex flow structures for different lengths of the deflection duct.

1. INTRODUCTION

When a jet is exhausted into the free
air, the jet interacts with the air and creates
a complex flow pattern where the complexity
depends on whether the jet is subsonic or
supersonic. If the jet is supersonic, the jet
exit pressure also determines the complexity
of the flow structure which in the case of
under-expanded jet reveals diamond-shaped
shock cells with normal and oblique shocks.
The intensity and the core length of the
mixing region depends on whether the jet is
either moderately or strongly expandedl_g.

However, when a wall is placed
blocking the exhaust jet, the interaction
between the free jet and the wall further
complicates the shock pattern, yielding a
separation bubble in the stagnation area
beneath the Mach disk and the plate shock.

Recently, Love et al®  conducted
experimental study of jet impingement on
heat transfer as a function of jet pressure
and separation distance between the jet and
the wall. Several experimental® ™ and
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numerical works® have been reported on this

jet impinging phenomenon; but, so far
experimental works have led numerical
computations  because of difficulty in
computing the shock/shock and shock/wall

interaction flow fields.

In the cwrrent work, jet impingement
from a circular jet onto a rectangular duct is
simulated employing a computational
procedure that adopts Roe’s flux-difference
splitting method in a modified form. The flow
structure and the stability of the numerical
solution are investigated for a few horizontal
lengths of the deflection duct. Since the
outflow boundary condition at the exit plane
is not known, choice of exit condition would
influence the solution. It was thought at the
outset that application of characteristic
boundary condition at the exit plane would
result in a stable solution if the length of the
duct is stretched adequately far enough. The
present work subsequently shows that the
stability of the numerical solution is not
affected by merely lengthening the deflection
duct. Rather, the distance between the jet
exit plane and the opposing wall at the
bottom is a major factor that influences the
flow structure of the jet. In the present
paper, however, attention is focused on the
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effect of lengthening the deflection duct on  splitting (RFDS) method."*"® The present
the flow structure as well as the numerical approach also adopts many ideas from

stability
fixed.

while the position of the jet is

2. PROBLEM DESCRIPTION

An axi-symmetric jet issuing from a
circular nozzle is deflected horizontally
through a rectangular duct as shown in Fig.
1 which is comprised of computational mesh
at the surrounding wall. The jet impinges
onto the bottom of the rectangular duct
through a circular hole at the top of the duct.
The bottom of the horizontal duct is 1.0D
away vertically from the jet exit, where D
represents the diameter of the cylindrical
shroud that surrounds the exiting jet.

At the jet exit plane, the Mach number
is 3.0, the static pressure is 14.1 psi and the
Reynolds number is 7.1x10° based on unit
length(1 foot). It s thus weakly
over-expended jet. The flow is also assumed
to be turbulent and the turbulence model is
called in the viscous wall region. Although
the gas is in reality mixture of hot gases
and particles, to simplify the computation, the
gas is assumed to be an ideal one.

Among the questions raised are how the
shock structure would be formed, where the
highest pressure zone would occur, and more
importantly whether it would remain steady.
The steadiness of the numerical solution is
examined closely, since the flow structure
continues to change if the boundary condition
is not settled properly. This fact led us to
experiment with varying lengths of the
horizontal duct.

3. NUMERICAL METHOD

The basic numerical algorithm follows
conservative  supra-characteristics  method
(CSCM) of Lombard et al®" and
characteristic flux-difference splitting (CFDS)
method of Yang et al’®®  which may be
regarded as variants of Roe's flux-difference

flux-vector splitting formulations of Warming
and Beam'®, Pulliam and Steger'’, Pulliam and
Chausseelg, among many others.

The governing Navier-Stokes equations
employed in the generalized coordinate

system, ( & 7, ¢), are expressed for the
conservative variable vector as

P 3 P)
rl—a‘f+a—$(ﬁ+ Fu)+—5,-7-(8+ G.)
+-§$(H+ A)=0 (1)

F. G, and B are inviscid

vectors, and F - @,, FL are viscous flux

where flux

vectors. The inviscid fluxes are linearized and
split for upwind discretizations by

peF=Ang=( A"+ A ) ng
and
A'=mMTA T U (2)
yielding
T 'ég+ .2(+V5q+ A n.q+ B+V,,q

+ B ag+ C'vsa+ C a,q
+ (viscous terms)= 0 3

1_ 4" and the overbar, ( ),

associated variable is

where 6¢g=q""
means the

spatial-averaged over the interval, [j,j+1. M

1
or M

the conservative variable vector ¢ and the

is a transformation matrix between

~

primitive variable vector, say, ¢q. 1 or

1. . .
T 'is defined to be a transformation
matrix between the primitive variable vector

& and the characteristic variable vector, say,

~ —
g. The matrix product M T or
=1 =1 .

T M represents transformation

between q and Z Although finding M and
T and their inverses requires many tedious
steps, having A
M and

algebraic expressed in

terms of T and their inverses
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enables us to transform the conservative
form of governing equations, Eq. (3), freely
back to the characteristic form. It is easier to
apply the characteristic boundary conditions

when the equations are written in the
characteristic form.
The viscous flux vectors associated

with £, 7 and ¢ directions, respectively, can
be related to the conservative vector ¢ via

Fv = AUAEQy av = BuAr;q»
ﬁ y = Cu A Y (4)
For simplicity and practical purpose, ¢

~direction viscous flux is neglected, and

viscous coefficient matrices B, and C, are

retained in the current formulation. Upwind
flux-difference splitting for the inviscid fluxes
and second-order central differencing for the
viscous fluxes are then applied for
discretizations. When the flow becomes
turbulent, eddy viscosity is added to the
laminar viscosity. Currently Baldwin-Lomax
eddy viscosity model is utilized to account

for flow turbulence. Solutions are then
updated from q" to ¢! via implicit
approximation in ( 7, ¢)-plane and

symmetric Gauss-Seidel relaxation for &

-direction.

3.1 Boundary Conditions

Choice of proper boundary conditions is
crucial for fast convergence. Application of
characteristic boundary procedure is based
upon a realization that there are five
characteristics associated with the convective
part of the Navier-Stokes equations.
Especially for subsonic outflow boundaries,
the first four characteristics propagate from
the interior domain to the exit boundary and
thus, their corresponding equations are
retained as in the original Navier-Stokes
equations. The fifth characteristics carries
information from right to left toward the exit
boundary from the outside of the
computational domain. Since we do not know
the value of it, nor its characteristic variable,

it is customary to replace it by a suitable

physical entity, say pressure p. Thus, for the
fifth characteristic equation, the original
characteristic  equation, known as the

P~ — equation, is replaced by an auxiliary
equation condition, dp /ot = (. This is
in practice implemented through the change
in the 5™ row of T ! by

[0,0,0,0,—7%

yielding
8¢ =T'6g=0PI7P=10 (5
At the wall, no-slip condition for
velocity and  adiabatic = condition  for
temperature are imposed in the direction

normal to the wall. In the symmetry plane,
primitive variables are extrapolated from
neighboring planes.

4. RESULTS AND DISCUSSIONS

The computational domain is divided
into two regions: the jet plume area is
discretized by a circular grid, and the
rectangular duct area is represented by
rectangular grid, as shown in Fig. 1. The
grids with different topologies are overlapped
by a grid cell where the two grids exchange
data through interpolation. The circular grid
consists of (j,k,1)=(33,35,37) for the symmetric
half domain and shown in Fig. 1. The
symmetry planes correspond to at /=1 and
1=37 in the y-z space. Here the computational
index (j,k,I) replaces the coordinate direction
(& 7 ¢). Along the jet centerline, at k=1
for all j's and !'s of grid no. 1, the grid is
singular and thus the flow variables are
averaged from the neighboring points for
each j. The second, rectangular grid which
models the deflection duct is made of
(46,40,69) for the standard case, where j=46
is at the open end of the duct.

In the beginning of computation, the
flow structure was noticed to change
continually as the iteration increased when
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the boundary condition was extrapolated.
This point was attributed partly to the nature
of uncertain free boundary when the far-field
boundary was not adequately distanced from
the jet center and partly to unsettled pressure
at the free boundary when the extrapolation
method was applied. This problem was
sought to be cured through numerical
experimentation by placing the far-field
boundary farther away from the jet center,
extending the length of the duct by 1.0, 2.0,
and 4.0D distance in the x direction in
addition to what is shown in Fig. 1.

At the outset, the rest of the field
except the nozzle exit plane was given a
sea-level pressure and density as an initial
condition. But the velocity field was
inadvertently retained the same value as the
jet exit velocity; which was unrealistically
too high. Thus, this set of initial solution
yielded continuously growing force exerted on
the bottom wall. This problem disappeared
when the initial velocity field was set to a
smaller value, say, 0.1 times the jet exit
velocity and the pressure, to the atmospheric
pressure, coupled with imposition of
characteristic method at the exit boundary.
This stabilized the numerical solution even
for the base case, which corresponds to that
in Fig. 1 and is denoted in Fig. 2 as X=0D,
meaning no eXtension. Then computations for
the three other cases with longer deflection
ducts were pursued to find out whether the
results do show any difference in the flow
structure. The pressure force integrated over
the bottorn wall area corresponding to that
shown in Fig. 1, and later to that in Fig. 6,
is plotted for four cases in Fig. 2 as a
function of iteration number. The size of the
extended duct length has been denoted by
X=0, 1, 2, and 4D, for the four cases. The
integrated pressure force settles toward a
constant value after initial ups and downs
after iter=2000 for all four curves. Presently
solutions are taken at about iter=3500 to
ensure the solutions have indeed reached a
steady-state value.

Computational results thus obtained on

Cray-YMP show that the shock is formed at
the jet exit area and travels downstream at
the outset, and that a shock shell bounded by
a strong shear is formed gradually as the
computational time increases. Mach disc is
shown to form early in the computation and
then reflected shock appears in the form of
an oblique shock structure as shown in the
vz mid-plane in Fig. 3 in terms of Mach
contours. The reflected oblique shock creates
a strongly sheared flow beneath the shock
and makes the flow rotate, inducing a
counter-rotating vortices above the stagnation
region. Formation of such vortices due to jet
shear layer is observed in Fig. 4 from
velocity vectors. The wall pressure contours
exhibit two high-pressure zones in Fig. 5
shown at the bottom of the deflection duct,
displaying two concentric circles. The two
pressure peaks occur because of oblique
shocks, and this pattern has been observed in
Ref2 and by our in-house experiments
repeatedly. In order to verify that what we
have computed is within an experimental
bound, an experiment is also concurrently
cartried out by our internal working group. A
model is prepared and total force is
measured impacting the bottom wall of Fig.
5. Wall pressure values are also recorded
along z-coordinate and x-coordinate locations
at the bottom wall of Fig. 5. The computed
total force matches within 5 percent of the
measured force and predicted wall pressure
distributions match very closely with
measured values. Figure 6 shows comparison
between the computed and measured pressure
along the bottom line of Fig. 3. The scales in
the figure are arbitrary and z=0 indicates the
middle point between the two parallel walls.
Mach contours are also presented in Fig. 7 in
xy-plane along the mid-plane(z=0), showing
a pocket of shock shell.

It is important to point out that similar
results are obtained for the other three cases
with longer duct size. In order to show
independence of shock structure on the duct
lengths, it is sufficient to present Mach
contours in the cases of X=1D, 2D and 4D
in the middle xy-plane in Figs. 8, 9 and 10
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respectively. They are comparable to Fig. 7
and display a similar core structure even if
the duct length has been extended due to the
supersonic nature of the current jet flow.
This in turmm proves that current method of
computing jet impingement process serves as
a well-established viable tool in designing a
flame deflector and is also shown to yield a
stable numerical solution as well as the flow
structure that is backed up by experiments.

5. CONCLUDING REMARKS

Objectives of present work were to
uncover details of jet impingement process in
the presence of wall. Emphasis has been
placed on testing the effect of the duct length
on obtaining a stable numerical solution. The
current study reveals that the flow structure
retains basically the same pattern even if the
length of the duct is lengthened and that
merely lengthening the duct length alone does
not overcome the uncertainty associated with
the outflow boundary condition.

Verification of accuracy of current work
was carried out independently through an
experimental work and comparisons between
the measured and computed pressure are
quite satisfactory.
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Fig.1 Grid system at the wall boundaries.
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