• 제목/요약/키워드: Jet Structure

검색결과 492건 처리시간 0.024초

윈드프로파일러 관측 자료를 이용한 장마철 강수 형태 분류와 관련된 종관장의 특성 분석: 2003년-2005년 (Classification of Precipitation Type Using the Wind Profiler Observations and Analysis of the Associated Synoptic Conditions: Years 2003-2005)

  • 원혜영;조천호;백선균
    • 대기
    • /
    • 제16권3호
    • /
    • pp.235-246
    • /
    • 2006
  • Remote sensing techniques using satellites or the scanning weather radars depend mostly on the presence of clouds or precipitation, and leave the extensive regions of clear air unobserved. But wind profilers provide the most direct measurements of mesoscale vertical air motion in the troposphere, even in the context of heavy precipitation. In this paper, the precipitation events during the Changma period was classified into 4 precipitation types - stratiform, mixed stratiform/ convective, deep convective, and shallow convective. The parameters for the classification of analysis are the vertical structure of reflectivity, Doppler velocity, and spectral width measured with the wind profiler at Haenam for a three-year period (2003-2005). In addition, the synoptic fields and total amount of precipitation were analyzed using the Global Final Analyses (FNL) data and the Global Precipitation Climatology Project (GPCP) data. During the Changma period, the results show that the stratiform type was dominant under the moist-neutral atmosphere in 2003, whereas the deep convective type was under the moist unstable condition in 2004. The stratiform type was no less popular than the deep convective type among four seasons because the moist neutral layer was formed by the convergence between the upper-level jet and the low-level jet, and by the moisture transport along the western rim of the North Pacific subtropical anticyclone.

항공기 구조 및 제트 엔진에 관한 연구 제 1 절 : 제트엔진용 터어빈디스크의 열전도 해석 (A Study on Aircraft Structure and Jet Engine Part1 : Analysis of Heat Conduction on the Turbine Disk for Jet Engine)

  • Gil Moon Park;Hwan Kyu Park;Jong Il Kim;Jin Heung Kim;Moo Seok Lee;Nak Kyu Chung
    • Journal of Astronomy and Space Sciences
    • /
    • 제2권2호
    • /
    • pp.153-174
    • /
    • 1985
  • The one of critical factor in gas turbine engine performance is high turbine inlet gas temperature. Therefore, the turbine rotor has so many problems which must be considered such as the turbine blade cooling, thermal stress of turbine disk due to severe temperature gradient, turbine rotor tip clearance, under the high operating temperature. The purpose of this study is to provider the temperature distribution and heat flux in turbine disk which is required to considered premensioned problem by the Finite Difference Method and the Finite Element Methods on the steady state condition. In this study, the optimum aspect ratio of turbine disk was analysed for various heat conductivity of turbine disk material by Finite Difference Method, and the effect of laminating method with high conductivity materials to disk thickness direction by Finite Element Methods in order to cool the disk. The laminating method with high conductivity material on the side of the disk is effective.

  • PDF

Numerical Study of AGN Jet Propagation with Two Dimensional Relativistic Hydrodynamic Code

  • MIZUTA AKIRA;YAMADA SHOICHI;TAKABE HIDEAKI
    • 천문학회지
    • /
    • 제34권4호
    • /
    • pp.329-331
    • /
    • 2001
  • We investigate the morphology of Active Galactic Nuclei(AGN) jets. AGN jets propagate over kpc $\~$ Mpc and their beam velocities are close to the speed of light. The reason why many jets propagate over so long a distance and sustain a very collimated structure is not well understood. It is argued that some dimensionless parameters, the density and the pressure ratio of the jet beam and the ambient gas, the Mach number of the beam, and relative speed of the beam compared to the speed of light, are very useful to understand the morphology of jets namely, bow shocks, cocoons, nodes etc. The role of each parameters has been studied by numerical simulations. But more research is necessary to understand it systematically. We have developed 2D relativistic hydrodynamic code to analyze relativistic jets. We pay attention to the propagation velocity which is derived from 1D momentum balance in the frame of the working surface. We show some of our models and discuss the dependence of the morphology of jets on the parameter.

  • PDF

음속 이차유동 분출시 나타나는 초음속 노즐 내부 유동장에 관한 연구 (Study of Flowfield of the Interaction of Secondary Sonic Jet into a Supersonic Nozzle)

  • 고현;이열;윤웅섭
    • 한국추진공학회지
    • /
    • 제7권3호
    • /
    • pp.45-52
    • /
    • 2003
  • 원추형 초음속 노즐 확산부에 이차유동이 음속으로 분출될 때 나타나는 노즐 내부 유동장에 대한 수치적 연구가 이루어졌다. 대수-난류모델과 $\kappa$-$\varepsilon$ 모델을 사용한 레이놀즈-평균 Navier-Stokes 방정식을 계산함으로서 노즐 내부에서 나타나는 충격파와 경계층의 간섭에 의한 3 차원 유동장을 해석하였다. 얻어진 수치해석의 결과는 동일한 조건에서 수행된 실험결과와 잘 일치하고 있음이 판명되었다. 이차유동의 분출압력 변화가 충격파와 경계층의 간섭과 함께 노즐내부 유동장 구조에 미치는 영향을 평가하였다. 아울러 충격파 간섭 후방에서 나타나는 와류유동 구조와 벽면 압력분포에 관한 정보를 얻었다.

발전소 굴뚝에서의 입자 분산에 대한 수치해석 (Numerical study of particle dispersion from a power plant chimney)

  • 심정보;유동현
    • 한국입자에어로졸학회지
    • /
    • 제13권4호
    • /
    • pp.173-182
    • /
    • 2017
  • An Eulerian-Lagrangin approach is used to compute particle dispersion from a power plant chimney. For air flow, three-dimensional incompressible filtered Navier-Stokes equations are solved with a subgrid-scale model by integrating the Newton's equation, while the dispersed phase is solved in a Lagrangian framework. The velocity ratios between crossflow and a jet of 0.455 and 0.727 are considered. Flow fields and particle distribution of both cases are evaluated and compared. When the velocity ratio is 0.455, it demonstrates a Kelvin-Helmholtz vortex structure above the chimney caused by the interaction between crossflow and a jet, whereas the other case shows flow structures at the top of the chimney collapsed by fast crossflow. Also, complex wake structures cause different particle distributions behind the chimney. The case with the velocity ratio of 0.727 demonstrates strong particle concentration at the vortical region, whereas the case with the velocity ratio of 0.455 shows more dispersive particle distribution. The simulation result shows similar tendency to the experimental result.

연료 과농 환경에서 분사기 유량 통과 특성 연구 (Study of Flow Discharging Characteristics of Injectors at Fuel Rich Conditions)

  • 서성현;임병직;김문기;안규복;김종규;최환석
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제35회 추계학술대회논문집
    • /
    • pp.9-12
    • /
    • 2010
  • 본 논문은 연료 과농 연소 환경 하의 이중 와류 동축형 분사기의 유량 통과 특성 파악을 위해 수행한 실험결과를 수록하였다. 액체산소와 케로신(Jet A-1)을 사용하여 연소시험을 수행하고 유량 통과 특성을 유량계수로 표현하였다. 유량계수 산출을 위해 유량, 압력, 온도를 계측하였다. 연료 분사기의 경우, 산화제 측 분사기 형상, 연소압, 혼합비에 관계없이 일정한 유량 계수 값을 보였다. 이에 반해 산화제 분사기는 연소압과 혼합비 변화에 영향을 받는 것으로 나타났다. 화염 형성 변화가 유량계수 변화에 특히 산화제 측에 영향을 주고 있음을 밝혔다.

  • PDF

NUMERICAL SIMULATIONS OF HH 211: A REFLECTION-SYMMETRIC BIPOLAR OUTFLOW

  • MORAGHAN, ANTHONY;LEE, CHIN-FEI;HUANG, PO-SHENG;VAIDYA, BHARGAV
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.113-114
    • /
    • 2015
  • Recent high-resolution, high-sensitivity observations of protostellar jets have shown many to possess an underlying 'wiggle' structure. HH 211 is one such example where recent sub-mm observations revealed a clear reflection-symmetric wiggle. An explanation for this is that the HH211 jet source is moving as part of a protobinary system. Here we test this assumption by simulating HH211 through 3D hydrodynamic simulations using the pluto code with a molecular chemistry and cooling module, and initial conditions based on an analytical model derived from SMA observations. Molecular chemistry allows us to accurately plot synthetic molecular emission maps and position-velocity diagrams for direct comparison to observations, enabling us to test the observational assumptions and put constraints on the physical parameters of HH211. Our preliminary results show that the reflection-symmetric wiggle can be recreated through the assumption of a jet source being part of a binary system.

KaVA and EAVN large program on two Supermassive Black Holes, Sgr A∗ and M87

  • Sohn, Bong Won;Kino, Motoki
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.52.1-52.1
    • /
    • 2019
  • Exploring the vicinity of super-massive black holes (SMBHs) is one of the frontiers in astrophysics. KaVA AGN Science WG has launched its Large Program in 2014 focusing on two SMBHs, Sgr A∗ and M87. They are selected based on their large apparent size. Sgr A∗ is the excellent laboratory for studying gas accretion process onto SMBH and M87 is well known as the best case for investigating plasma outflow ultimately driven by SMBH. For Sgr A∗, KaVA and EAVN provides superb UV-coverage on its emitting region and its scattering medium. In the case of M87, we have conducted high cadence dual-frequency (22and 43GHz )VLBI monitoring to clarify the global profile of the M87 jet velocity field and the spectral index map, which should reflect global structure of magnetic fields in the jet. From 2017, the AGN LP is recognized as multi-wavelength EHT project, conducting quasi-simultaneous coherent observations of M87 and Sgr A∗ with the Event Horizon Telescope (EHT) during its campaign observation periods. AGN WG is reviewing and revising its LP to convert it to EAVN LP. We will briefly report our scientific results and future plan which includes even broader international collaboration, namely East-Asia to Italy Nearly Global (EATING) VLBI to reach higher angular resolution.

  • PDF

다공성 매질에서 Local Thermal Equilibrium에 관한 연구 (Study on Local Thermal Equilibrium in a Porous Medium)

  • 장석필;김성진
    • 대한기계학회논문집B
    • /
    • 제26권8호
    • /
    • pp.1172-1182
    • /
    • 2002
  • In the present study a general criterion for local thermal equilibrium is presented in terms of parameters of engineering importance which include the Darcy number, the effective Prandtl number of fluid, and the Reynolds number. For this, an order of magnitude analysis is performed for the case when the effect of convection heat transfer is dominant in a porous structure. The criterion proposed in this study is more general than the previous criterion suggested by Carbonell and Whitaker, because the latter is applicable only when conduction is the dominant heat transfer mode in a porous medium while the former can be applied even when convection heat transfer prevails. In order to check the validity of the proposed criterion for local thermal equilibrium, the forced convection phenomena in a porous medium with a microchanneled structure subject to an impinging jet are studied using a similarity transformation. The proposed criterion is also validated with the existing experimental and numerical results for convection heat transfer in various porous materials that include some of the parameters used in the criterion such as a microchannel heat sink with a parallel flow, a packed bed, a cellular ceramic, and a sintered metal. It is shown that the criterion presented in this work well-predicts the validity of the assumption of local thermal equilibrium in a porous medium.

원형 및 타원형 노즐 내부유동과 외부유동의 상관관계 (Correlations of Internal Nozzle Flow in Circular and Elliptical Nozzles with External Flow)

  • 구건우;홍정구;박철우;이충원
    • 대한기계학회논문집B
    • /
    • 제36권3호
    • /
    • pp.325-333
    • /
    • 2012
  • 원형 및 타원노즐의 내부유동과 외부유동의 상관관계를 알아보기 위해 실험적 연구가 수행되었다. 분사압력에 따라 유량, 분무각, 액적크기 등의 외부유동에 관해 관찰하였고, 노즐 내부유동의 유속 및 압력분포 등을 수치해석을 통해 정량적인 결과를 도출하였다. 외부유동의 경우, 동일한 압력조건하에서 타원형 노즐의 경우, 원형 노즐에서 나타나지 않는 표면분열의 분무특성을 관찰할 수 있었고, 수치해석을 통해 노즐 내부의 유동을 분석한 결과, 원형의 경우와는 달리 타원형 노즐의 단축에서 내부유동의 재부착이 노즐 벽면에서 발생되었다. 타원노즐 외부유동의 표면분열이 내부유동에 따른 결과라고 판단된다.