• Title/Summary/Keyword: Jet Stream

Search Result 186, Processing Time 0.028 seconds

Calculation of the internal flow in a fuel nozzle (연료노즐 내부유동 현상의 수치해석)

  • Gu, Ja-Ye;Park, Jang-Hyeok;O, Du-Seok;Jeong, Hong-Cheol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.6
    • /
    • pp.1971-1982
    • /
    • 1996
  • The breakup of liquid jet is the result of competing, unstable hydrodynamic forces acting on the liquid jet as it exit the nozzle. The nozzle geometry and up-stream injection conditions affect the characteristics of flow inside the nozzle, such as turbulence and cavitation bubbles. A set of calculation of the internal flow in a single hole type nozzle were performed using a two dimensional flow simulation under different nozzle geometry and up-stream flow conditions. The calculation showed that the turbulent intensity and discharge coefficient are related to needle position. The diesel nozzle with sharp inlet under actual engine condition has possibility of cavitation, but round inlet nozzle has no possibility of cavitation.

An Experimental Study on the Turbulent Flow of a 45$^{\circ}C$ Free Cross Jet (450自由衝突 噴射 의 亂流流動 에 관한 實驗的 硏究)

  • 노병준;김장권
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.5
    • /
    • pp.442-449
    • /
    • 1984
  • Turbulent jet flow has been studied in many ways; a plane jet, a rectangular jet, an annular jet, a round jet, a wall jet, a parallel jet, a valve jet, a cross jet, a slit jet and etc. In this report, a 45.deg. cross jet flow was tried by using two same dimensioned nozzels(dia..phi.20)which were set up at the exit of the subsonic wind tunnel. Each jet flows to the direction of 22.5.deg. to the axis of downstream of the mixed flow. The centerline of each jet meets at the distance of 217.3mm and their mixing flow could be imagined to develop beyond that distance, so the measurement was effectuated at X/X$_{0}$=1.2-1.5. The section of the mixed flow a elliptic circle which is formed by the 22.5.deg. inclined flows to the X direction. This experimental study aimed at the investigation of the turbulent mixing process of two jets; the mean velocities, the turbulent shear stresses, the correlation coefficients, and the momentum were respectively measured. The mean velocity distribution profiles of the down-stream component measured in the Y direction coincide well with the empirical equation of Gortler and those measured in the Z direction agree with the equation of H. Schlichting. Other mean velocities V over bar and W over bar components were randomly distributed. The higher values with same order of the intensity of turbulence were largely distributed at the central part of the flow. The momentum was decreased up to 70% by the shock losses and the development of intense turbulences, but it kept its value constantly beyond X/d=14. Two-channel hot-wire anemometer systems (model 1050 series), X-type hot-wire made of tungsten (dia. .phi.e.mu.m, long 3mm, model 0252 T5), a computer(model HP 9845B0, and a plotter (model HP 9872C) were used for the experiments and the analyses.s.

A Numerical Analysis of Supersonic Counter Jet Flow Effect on Performance of a Supersonic Blunt-Body (초음속 역분사 유동이 초음속 비행체 성능에 미치는 영향에 대한 수치해석적 연구)

  • Seo D. K.;Seo J. I.;Song D. J.
    • Journal of computational fluids engineering
    • /
    • v.7 no.3
    • /
    • pp.1-8
    • /
    • 2002
  • The counter jet flow which is injected against the free stream at stagnation region of blunt body for improvement of aerodynamic performance has been studied by using upwind Navier-Stokes method. The variations of drag force and upwind forward penetration depth due to changes in the stagnation thermodynamic properties of counter jet flow such as total pressure, Mach number, and total temperature have been studied. The results show that the changes in the stagnation pressure and Mach number have large effects on the wall pressure and drag force, but the total temperature does not affect the wall pressure and drag force.

Comparison of the Side-Jets and Rear-Jet Effects on the Controllability of Flow-Induced Vibrations

  • HONG Jun-Ho;ARAI Norio
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.164-165
    • /
    • 2003
  • The problem of a bluff body oscillating in a fluid flow has been receiving a great deal of attention. When a bluff body is placed in a flow, it experiences fluctuating hydraulic forces in both transverse and stream-wise directions. It is caused by the formation of vortices behind the body, which could cause large damages of structures. It is called the flow-induced vibrations. In this article, it is investigated the effects of that side-jets and rear-jet, which is applied to control the vortex shedding. The rear-jet is available to control the flow-induced vibrations according as the body shapes and the velocity of fluid flow in which the galloping phenomena is not appeared.

  • PDF

NAVIER STOKES COMPUTATIONS ON A TWIN ENGINE NOZZLE-AFTERBODY

  • Gogoi, A.;Sundaramoorthi, S.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.761-770
    • /
    • 2008
  • The report presents turbulent Navier Stokes computations on twin engine afterbody model with jet exhaust. The computations are carried out for free-stream Mach number of 0.8 to 1.20 and jet pressure ratio of 3.4 to 7.8. The Spalart-Allmaras turbulence model is used in the computations. Comparison is made with experimental data and Cp distribution around the afterbody is found to agree well with experiments. Flow features of the exhaust jet like under expansion, over expansion, Mach discs, etc are well captured. The effect of nozzle pressure ratio and flight Mach number are studied in detail. These computations serve as validation of the in-house code for twin jet afterbody.

  • PDF

Effect of Nozzle Geometry on the Near Field Structure of Under Expanded, Dual, Coaxial Jet (노즐 형상이 부족팽창 동축제트 근접 유동장에 미치는 영향)

  • Lee, Kwon-Hee;Toshiake, Setoguchi;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1649-1654
    • /
    • 2004
  • The near field structures of an under-expanded, dual, coaxial, jets issuing from the coaxial nozzles with four different geometries are visualized by using a shadowgraph optical method. Experiments are conducted to investigate the effects of the nozzle-lip thickness, secondary stream thickness, the nozzle pressure ratio and the secondary swirl stream on the characteristics of under-expanded jets. The results show that the presence of secondary annular swirling stream causes the Mach disk to move further downstream and increases its diameter, which decreases with a decrease in the nozzle-lip thickness. The secondary stream thickness has an influence on the location of an annular shock wave.

  • PDF

Investigation on the Prediction Performance of the Chemical Kinetics for the Numerical Simulation of MILD Combustion (마일드 연소장 수치계산을 위한 화학반응기구의 예측성능 검토)

  • Kim, Yu Jeong;Oh, Chang Bo
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.341-344
    • /
    • 2012
  • The prediction performance of the chemical kinetics for the numerical simulation of MILD combustion was investigated. A wall-confined turbulent methane jet combustor was adopted as a configuration. Four chemical kinetics, such as a global 3-step, WD4, Skeletal, and DRM-19, were investigated, The air stream of the wall-confined MILD jet combustor was diluted with combustion products. It was found that the DRM-19 was optimal for the numerical simulation of the MILD combustion.

  • PDF

Computational Study of the Mild Combustion and Pollutant Emission Characteristics in Wall-confined Jet (벽면으로 둘러싸인 제트 유동장에서의 마일드연소 및 오염물질 배출특성에 관한 전산해석 연구)

  • Song, Keum Mi;Oh, Chang Bo
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.263-266
    • /
    • 2012
  • The characteristics of mild combustion and pollutant emission were investigated computationally with supplied air stream temperature and dilution rate in jet flame. The air was diluted with main combustion products. As dilution rate increased at fixed air temperature, the temperature distribution of burner inside was uniformed and the maximum mole fraction of CO and NO was decreased. In addition, emission indices for NO, CO, and $CO_2$ were compared with air temperature and dilution rate.

  • PDF

Influence of Jet Nozzle Arrangement on the Performance of a Coanda Foil (제트 노즐의 배치가 콴다 날개의 성능에 미치는 영향)

  • Seo, Dae-Won;Kim, Joung-Hyun;Kim, Hyo-Chul;Lee, Seung-Hee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.6
    • /
    • pp.569-578
    • /
    • 2008
  • The Coanda effects demonstrate that a jet stream applied tangential to a curved surface can generate lift force by increasing the circulation. Many experimental and numerical studies have been performed on the Coanda effect and it is found to be useful in various fields of aerodynamics. The Coanda effect may have practical application to marine hydrodynamics since various control surfaces are being used to control behaviors of ships and offshore structures. In the present study, numerical computations are performed to find the applicability of the Coanda effect to the marine control surfaces. For the purpose, changes in flow characteristics around a flapped foil due to the Coanda effect have been simulated by RANS equations discretized with a cell-centered finite volume method (FVM). In the process, special attention has been given to the influence of jet nozzle arrangement on the lift characteristics of the Coanda foil. It is found that the shape as well as the location of the jet intake and jet exit affects the lift performance of the foil significantly.

Vertical Buoyant Jet in Tidal Water -Crossflowing Environment- (흐름 수역(水域)에서 연직상향부력(鉛直上向浮力)?)

  • Yoon, Tae Hoon;Cha, Young Kee;Kim, Chang Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.11-22
    • /
    • 1987
  • A plane buoyant jet discharged vertically upward into a crossflow is analyzed by numerical solution of the governing equations of continuity, momentum and constituent transport. The turbulent transport is modelled by the Prandtl's mixing length theory. In the numerical solution procedure, the governing equations are transformed by stream function and vorticity transport, non-dimensionalyzed by discharge velocity, slot width, and parameters representing flow characteristics, and solved by Gauss-Seidel iteration method with successive underrelaxation. The numerical experiments were performed for the region of established flow of buoyant jet in the range of discharge densimetric Froude number of 4 to 32 and in the range of velocity ratio of 8 to 15, which is the ratio of discharge velocity to crossflow velocity. Variations of velocities and temperatures, flow patterns and vorticity patterns of receiving water due to buoyant jet were investigated. Also investigated are the effects of velocity ratio and discharge densimetric Froude number on the trajectories of buoyant jet. Computed are velocities, temperatures and local densimetric Froude numbers along the trajectory of the buoyant jet. Spreading rate and dispersion ratio were analyzed in terms of discharge densimetric Froude number, local densimetric Froude number and distance from the source along the jet trajectory. It was noted that the similarity law holds in both the profiles of velocity and temperatures across the jet trajectory and the integral type analysis of Gaussian distribution is applicable.

  • PDF