• Title/Summary/Keyword: Jet Reynolds number

Search Result 268, Processing Time 0.028 seconds

An Experimental Study on Heat Transfer Characteristics of Arrangement Chips by Swirl Jet Impingement (선회충돌제트에 의한 배열 칩의 열전달 특성에 관한 실험적 연구)

  • 최재욱;전영우;정인기;박시우
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.624-631
    • /
    • 2004
  • The experimental study on heat transfer characteristics of protruding heated block array as conducted to investigate and to compare the performance of impinging single circular jet in fully developed tube with a twisted tape as a swirl generator. The effects of jet Reynolds number(Re=8700, 13800, 20000. 26500), dimensionless jet-to-block distance(H/d=1. 3, 5. 7) and swirl number(S=0.11, 0.23, 0.30) of the swirl jet on the average Nusselt number for each block and all blocks have been examined. Measurements of heat transfer rate on block surfaces were used naphthalene sublimation technique. Mean velocity and turbulence intensity of the jet along the axis were measured. Potential core length of the jet was 5 times of nozzle diameter because it was fully developed and initially turbulent. With the twisted tape in the nozzle, heat transfer coefficients were higher than those without the twisted tape. which are mainly caused with increasing the jet Reynolds number and swirl number.

Thermal Transport from an Aluminum Foam Heat Sink in a Confined Impinging Air Jet (국한 충돌공기제트에 의한 발포 알루미늄 방열기의 열전달 특성)

  • Hwang, Jun;Kim, Seo-Young;Kang, Byung-Ha
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.4
    • /
    • pp.496-503
    • /
    • 2003
  • An experimental study has been performed on thermal transport from an aluminum foam heat sink under a confined impinging air jet. Three kinds of aluminum foam heat sinks with 10, 20 and 40 PPI and a conventional pin-fin heat sink are tested in the present study. The jet Reynolds number is varied in the range of Re=667~5672 The effect of the confinement disk diameter and the distance between the confinement disk and the heater surface on the averaged Nusselt number is investigated in detail. The results are also compared with those of the unconfined impinging air jet. The critical distance, at which thermal performance shows a minimum compared to the unconfined jet impinging, will be described in terms of the Reynolds number and the pore density of the aluminum foam.

Heat Transfer on a Heated Flat Plate by an Impinging Round Jet Using Liquid Crystal (Liquid Crystal을 이용한 원형충돌분류의 전열특성 연구)

  • 오승묵;이상준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1566-1574
    • /
    • 1992
  • Local heat transfer characteristics for a round air jet impinging normally on a heated flat plate were experimentally investigated. The problem parameters investigated were jet Reynolds number, Re=4000,10000, and 20000, and nozzle-to-plate spacing(L/D) of 2,6, and 10. The temperature variations on the flat uniform heat flux surface were mapped using a thermo-sensitive liquid crytal sheet. The isochromatic images corresponding to the characteristic temperature of liquid crystal were analyzed with the help of a digital image processing system. The local Nusselt number, Nu decreased rapidly in the impingement region and exhibited a similar profiles in the wall jet region independent of the nozzle-to-plate spacing L/D. In the case of large Reynolds number, heat transfer rate (Nu) was proportional to 0.5 power of the Reynolds number. For L/D=2, a secondary peak in the heat transfer rate was seen in the region of X/D=1.5~3 due to the transition from laminar to turbulent boundary layer.

A Numerical Study of Turbulent Flow and Heat Transfer due to Slot-jet impinging on a Moving flat plate (이동평판에 작용하는 슬롯 충돌제트의 유동 및 열전달에 관한 수치적 연구)

  • Lee, Jong-Seok;Kim, Dong-Keon;Kim, Moon-Kyung;Yoon, Soon-Hyun;Kim, Bong-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2798-2803
    • /
    • 2008
  • The confined slot air jet impinging normally on a moving flat surface has been investigated numerically by using commercial CFD code Ansys CFX-V11. Turbulent flows are modeled using k-w turbulence model. Two-dimensional turbulent flow is considered. Calculations were conducted for a nozzle-to-plate spacing of eight slot nozzle width, at three Reynolds number(Re=4500, 6700 and 10,000) and four surface-to-velocity ratios i.e. 0, 0.25, 0.5 and 1. Results are compared against corresponding cases for heat transfer from a stationary plate. Local Nusselt number is calculated under constant wall temperature condition. The analysis reveals that the average Nusselt number increases considerably with the jet exit Reynolds number, but decrease with the plate velocity.

  • PDF

Cooling of a Rotating Heated Flat Plate by Water Jet Impingement (회전전열평판(回轉傳熱平板)의 충돌수분류(衝突水噴流)에 의한 냉각(冷却))

  • Jeon, Sung-Taek;Kim, Yeun-Young;Lee, Jong-Su;Park, Jong-Suen;Lee, Doug-Bong
    • Solar Energy
    • /
    • v.15 no.2
    • /
    • pp.47-64
    • /
    • 1995
  • An experimental investigation is carried out to see the local heat transfer characteristics of a rotating heated flat plate surface with constant heat flux when a normal water jet is impinging on this surface. The effects of jet Reynolds number, rotating Reynolds number are investigated while the distance between the nozzle and the flat plate is set fixed. As a result, correlations to relate the local Nusselt number to the local rotational Reynolds number, jet Prandtl number and the dimensionless radial position are presented.

  • PDF

Effect of nozzle geometry on the jet impingement heat transfer characteristics at protruding heated blocks (노즐형상에 따른 돌출 발열블록표면에서의 충돌분류 열전달 특성)

  • Chung, In-Kee;Park, Si-Woo
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.93-98
    • /
    • 2000
  • An experimental investigation on heat transfer characteristics of two-dimensional heated blocks using a confined impinging slot jet has been performed. At p/w=1, the effects of jet Reynolds number($Re=3900{\sim}12000$), dimensionless nozzle to block distance(H/B=1, 2, 4, 6) and nozzle type have been examined with five isothermally heated blocks. With the measurement of jet mean velocity and turbulence intensity distributions at nozzle exit, initially turbulent regimes, are classified. To clarify local heat transfer characteristics, naphthalene sublimation technique were used. The local and average heat transfer of heated blocks increase with the sharp-edged nozzle and increasing jet Reynolds number.

  • PDF

Numerical Study on the Cooling Characteristics of Pedestal Heat Source with an Confined Air Jet (제한벽이 있는 공기제트에 의한 돌출 발열체의 냉각 특성에 대한 수치 해석 연구)

  • Choi, In-Su
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.12 no.1
    • /
    • pp.11-18
    • /
    • 2009
  • The air flow and heat transfer characteristics of an air jet impinging on a pedestal heat source has been investigated numerically to examine the effects of geometric parameters such as nozzle-to-pedestal spacing, nozzle diameter and pedestal size. Also, the parameters of Reynolds number, air jet power, supplied heat and thermal conductivity of pedestal have been studied to reveal how these affect the average Nusselt number. Hence, a two-dimensional turbulent model has been developed and adopted to simulate the fluid flow and heat transfer phenomena numerically. The results obtained from the model show that the nozzle-to-pedestal spacing, relative size of nozzle to pedestal and Reynolds number of air jet have a significant influence on the cooling characteristics of heated pedestal. Furthermore, some useful guidelines could be given to the application of cooling the heated pedestal.

  • PDF

A Study on the Heat Transfer Characteristics of Turbulent Round Jet Impinge on the Inclined Concave Surface Using Transient Liquid Crystal Method (과도액정 기법을 이용한 오목표면 경사각도에 따른 난류 충돌 제트의 열전달 특성에 관한 연구)

  • Lim Kyoung-Bin;Lee Chang-Hee;Lee Sang-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.7 s.250
    • /
    • pp.656-662
    • /
    • 2006
  • The effects of concave hemispherical surface with inclined angle on the local heat transfer from a turbulent round jet impinging were experimentally investigated using transient liquid crystal method. This method suddenly exposes a preheated wall to an impinging jet and then the video system records the response of liquid crystals for the measurement of the surface temperature. The Reynolds numbers were used 11000, 23000 and 50000, nozzle-to-surface distance ratio from 2 to 10 and the surface angles $\alpha=0^{\circ},\;15^{\circ},\;30^{\circ}\;and\;40^{\circ}$. Correlations of the stagnation point Nusselt number according to Reynolds number, jet-to-surface distance ratio and dimensionless surface angle are investigated. In the stagnation point, in term of $Re^n$, n ranges from 0.43 in case of $2{\leq}L/d\leq6$ to 0.45 in case of $6. The maximum Nusselt number occurs in the direction of upstream. The displacement of the maximum Nusselt number from the stagnation point increases with increasing surface angle or decreasing nozzle-to-surface distance. The maximum displacement is about 0.7 times of the jet nozzle diameter.

A study on the local heat transfer in rectangular impinging water jet cooling system (장방형 충돌수분류 냉각계의 국소열전달에 관한 연구)

  • Lee, Jong-Su;Eom, Gi-Chan;Choe, Guk-Gwang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.4
    • /
    • pp.1395-1405
    • /
    • 1996
  • The purpose of this experimental research is to investigate the local heat transfer characteristics in the upward free water jet impinged on a downward flat plate of uniform heat flux. The inner shape of rectangular nozzle used was sine curve type and its contraction ratio of inlet to outlet area was five. Experimental parameters considered were Reynolds number, nozzle exit-flat plate distance, and level of supplementary water. Local Nusselt number was influenced by Reynolds number, Prandtl number, supplementary water level, and distance between the nozzle exit and flat plate. Within the impingement region, the Nusselt number has a maximum value on the nozzle center axis and decreases monotonically outward from center. Outside of the impingement region, on the other hand, the Nusselt number has a secondary peak near the position where the distance from nozzle center reaches four times the nozzle width. However if nozzle exit velocity exceeds 6.2 m/s, the secondary peak appears also in the impingement region. The empirical equation for the stagnation heat transfer is a function of Prandtl, Reynolds, and axial distance from the nozzle exit. The optimum level of supplementary water to augment the heat transfer rate at stagnation point was found to be twice the nozzle width.

An Investigation on Heat transfer Characteristics of Inclined Wall Attaching Offest jet (경사진 벽부착 제트의 열전달 특성에 대한 연구)

  • 심재경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.200-209
    • /
    • 1998
  • Experiments have been conducted to determine heat transfer characteristics for a two-dimen-sional turbulent wall attaching offset jet at different oblique angles to a flat surface. The local Nusselt number distributions were measured using liquid crystal as a temperature sensor. Wall static pressure coefficient profiles were measured at the Reynolds number Re 53200(based on the nozzle width, D) the offset ratio H/D from 2.5 to 10 and the oblique angle a from $0^{\circ}$, to $40^{\circ}$ It is observed that the maximum Nusselt number point occurs slightly upstream of time-averaged reattachment point for all oblique angles. The correlations between the maximum Nusselt number and Reynolds number offset ration and oblique angle are presented.

  • PDF