• Title/Summary/Keyword: Jet Instability

Search Result 115, Processing Time 0.025 seconds

Analysis of Fluid-Structure Interaction of Cleaning System of Micro Drill Bits (마이크로 드릴비트 세척시스템의 유체-구조 연성해석)

  • Kuk, Youn-Ho;Choi, Hyun-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.1
    • /
    • pp.8-13
    • /
    • 2016
  • The micro drill bit automatic regrinding in-line system is a system that refurbishes drill bits used in a PCB manufacturing process. This system is able to refurbish drill bits with a minimum size of ø0.15-0.075mm that have previously been discarded. Beyond the conventional manual cleaning process using ultrasound, this system adopts a water jet cleaning system, making it capable of cleaning drill bits with a minimum size of ø0.15-0.075mm. This paper analyses various contact pressures applied to the surface of drill bits depending on the shooting pressure of the cleaning device and fluid velocity in order to optimize the nozzle location and to detect structural instability caused by the contact pressures.

A Study on the Physical Properties of ATY Produced with Nylon FDY and ROY (Nylon FDY와 ROY로 제조한 ATY의 물성에 관한 연구)

  • Kim Seung Jin;Kim Jae Woo;Hong Sang Gi
    • Textile Coloration and Finishing
    • /
    • v.16 no.6
    • /
    • pp.35-43
    • /
    • 2004
  • This study surveys the physical properties of ATY produced with FDY and POY. ATY is made with 70d Nylon FDY and 80d Nylon POY using AIKI air jet texturing machines, respectively. The processing parameters such as air pressure and yam speed are varied, and air pressure is varied ranging with 8.5bar, l0.5bar and 1l.5bar, and yarn speed is varied ranging with 400m/mim, 450m/mim, and 500m/min. The various physical properties of ATY made by POY and FDY denier, wet shrinkage, dry shrinkage, tensile properties, thermal stress and instability are measured and discussed with air pressure and yam speed. The shrinkage simulation of ATY is performed for analysing the process shrinkage on the dyeing and finishing processes.

A Study of Kinetic Effect on Relativistic Shock using 3D PIC simulation

  • Choi, Eun-Jin;Min, Kyoung-Wook;Choi, Cheong-Rim;Nishikawa, Ken-Ichi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.67.1-67.1
    • /
    • 2012
  • Shocks are evolved when the relativistic jets in active galactic nuclei (AGNs), black hole binaries, supernova remnants (SNR) and gamma-ray bursts (GRBs) interact with the surrounding medium. The high energy particles are believed to be accelerated by the diffusive shock acceleration and the strong magnetic field is generated by Weibel instability in the shock. When ultrarelativistic electrons with strong magnetic field cool by the synchrotron emission, the radiation is observed in gamma-ray burst and the near-equipartitioned magnetic field in the external shock delays the afterglow emission. In this paper, we performed the 3D particle-in-cell (PIC) simulations to understand the characteristics of these relativistic shock and particle acceleration. Forward and reverse shocks are shaped while the unmagnetized injecting jet interacts with the unmagnetized ambient medium. Both upstream and downstream become thermalized and the particle accelerations are shown in each transition region of the shock structures.

  • PDF

Fabrication and Application of Nano-Fibers for Korean Post-Textile Industry (나노섬유의 제조와 응용 및 한국의 차세대 섬유산업)

  • 이재락;박수진;김효중;정효진;지승용;김준현
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.3-6
    • /
    • 2003
  • In this work, poly(ethylene oxide) nanofibers were fabricated by electrospinning to prepare nanofibers-reinforced composites. And the PEO powders-impregnated composites were also prepared to compare with physicochemical properties of nanofibers-reinforced composites. Morphology and fiber diameter of PEO nanofibers were determined by SEM observation. Mechanical interfacial properties of the composites were investigated in fracture toughness tests and interlaminar shear strength (ILSS) test. As a result, the fiber diameter decreased in increasing applied voltage. However the optimum condition for the fiber formation was 15 ㎸, resulting from increasing of jet instability at high voltage and the prepared PEO nanofibers were useful in fiber reinforced composites. The PEO-based nanofibers-reinforced composites showed an improvement of fracture toughness factors ($K_{IC} and G_{ IC}$) and ILSS, compared to the composites impregnated with PEO powders. These results were noted that the nanofibers had higher specific surface area and larger aspect ratio than those of the powder, which played an important role in improving the mechanical interfacial properties of the composites.

  • PDF

Spray modelization of air-assisted coaxial atomizer (이류체 분사노즐의 분무예측 모델)

  • Yun, Seok-Ju;Ledoux, M.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.6
    • /
    • pp.1948-1958
    • /
    • 1996
  • Experimental and theoretical studies on the air-assist coaxial atomizer have been continuously carried out for a long time. But now the importance of the theoretical study is tending to increase as with the development of computer. This study is concerned to the spray modelization, especially, the instability of the liquid jet surrounded by the air stream which flows with high velocity. To study the phenomena of the break up, we used the linear theory based on the classical Kelvin-Helmholtz theory for capillary wave at a simple interface and we investigated the variation of liquid core radius. As a result, we obtained that the drop diameter and the variation of the liquid core radius predicted by using our model are reasonable.

Development and Performance Tests of the Waste Water Diffusers using Acoustic Resonance and Oscillatory Pulsation (음향공진과 맥진동 현상을 이용한 폐수처리용 산기관 개발 및 성능시험)

  • Hong, Suk-Yoon;Moon, Jong-Duck
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.6
    • /
    • pp.52-58
    • /
    • 1996
  • Using the acoustic resonances and oscillatory pulsations considered as the branch of wave technologies, the concept of the acoustic resonance diffusers for waste water treatment which maximize the oxygen transfer efficiency in gas-liquid two phase medium have been proposed, and studies for the principles and performance tests were accomplished. Besides, the design concepts for the low pressure Helmholtz resonator, cylinder and annular type reflection resonator and combined type resonance system have been implemented. The acoustic resonance energy which can speed up the mass transfer process increase the oxygen transfer efficiency, and periodic pulsations generated from the instability of air jet from nozzle make very small air bubbles. Then, the annular type jet resonator(AJR) applying these two principles successfully was evalulated as the most promising device and also the efficiency showing $20{\sim}30%$ better than conventional diffusers has been verified experimentally.

  • PDF

LARGE-SCALE VERSUS EDDY EFFECTS CONTROLLING THE INTERANNUAL VARIATION OF MIXED LAYER TEMPERATURE OVER THE NINO3 REGION

  • Kim, Seung-Bum;Lee, Tong;Fukumori, Ichiro
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.21-24
    • /
    • 2006
  • Processes controlling the interannual variation of mixed layer temperature (MLT) averaged over the NINO3 domain ($150-90^{\circ}W$, $5^{\circ}N-5^{\circ}S$) are studied using an ocean data assimilation product that covers the period of 1993 to 2003. Advective tendencies are estimated here as the temperature fluxes through the domain's boundaries, with the boundary temperature referenced to the domain-averaged temperature to remove the dependence on temperature scale. The overall balance is such that surface heat flux opposes the MLT change but horizontal advection and subsurface processes assist the change. The zonal advective tendency is caused primarily by large-scale advection of warm-pool water through the western boundary of the domain. The meridional advective tendency is contributed mostly by Ekman current advecting large-scale temperature anomalies though the southern boundary of the domain. Unlike many previous studies, we explicitly evaluate the subsurface processes that consist of vertical mixing and entrainment. In particular, a rigorous method to estimate entrainment allows an exact budget closure. The vertical mixing across the mixed layer (ML) base has a contribution in phase with the MLT change. The entrainment tendency due to temporal change in ML depth is negligible comparing to other subsurface processes. The entrainment tendency by vertical advection across the ML base is dominated by large-scale changes in wind-driven upwelling and temperature of upwelling water. Tropical instability waves (TIWs) result in smaller-scale vertical advection that warms the domain during La Ni? cooling events. When the advective tendencies are evaluated by spatially averaging the conventional local advective tendencies of temperature, the apparent effects of currents with spatial scales smaller than the domain (such as TIWs) become very important as they redistribute heat within the NINO3 domain. However, such internal redistribution of heat does not represent external processes that control the domain-averaged MLT.

  • PDF

An Experimental Study on Characteristics of Droplet Generation by Electrospraying for Highly Viscous Liquids (정전분무에 의한 고점성 액체의 액적 생성 특성에 관한 실험적 연구)

  • Kim, Sang-Su;Gu, Bon-Gi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.4
    • /
    • pp.604-613
    • /
    • 2002
  • Generation characteristics of electrospray droplets for highly viscous liquid have been investigated by measuring size distributions of droplets emitted from the Taylor cone using glycerol solutions with various conductivities. Because of very small volatility of glycerol, droplet sizes can be measured by an aerodynamic size spectrometer (TSI Aerosizer DSP) with negligible evaporation of droplets. For highly conducting and viscous liquid, the sizes of the droplets electrosprayed from the Taylor cone are found to be relatively insensitive to applied voltages and the electrosprays assisted by the corona discharge call produce monodisperse droplets as long as the corona intensity is not too high. Near the minimum flow rate where a liquid cone is stable, the spray tends to consist of a one -peak monodisperse distribution of drop lets. However, at high flow rates, the spray bifurcates into bimodal distributions, which are consistent with the result of the previous study for less viscous liquids than our liquids. For liquid flow rates (Q) below 1 nl/s, the measured droplet diameters by the aerosizer are in the range of 0.30 to 1.2 ${\mu}{\textrm}{m}$ for the glycerol solutions. The diameters of monodisperse droplets scale approximately with $r^*=Q_$\tau$(Q$\tau$){^1/3}$ where $r^*$ is a characteristic length and $\tau$is the electrical relaxation time of the fluid. However, when compared with several represe ntative scaling laws, the droplet diameters are two to six factors greater than those predicted by the scaling laws. This may be closely related to the combined effect of the much higher viscosity and the electrical charge on the jet breakup of glycerol so solution.

Three-dimensional Analysis of Heavy Rainfall Using KLAPS Re-analysis Data (KLAPS 재분석 자료를 활용한 집중호우의 3차원 분석)

  • Jang, Min;You, Cheol-Hwan;Jee, Joon-Bum;Park, Sung-Hwa;Kim, Sang-il;Choi, Young-Jean
    • Atmosphere
    • /
    • v.26 no.1
    • /
    • pp.97-109
    • /
    • 2016
  • Heavy rainfall (over $80mm\;hr^{-1}$) system associated with unstable atmospheric conditions occurred over the Seoul metropolitan area on 27 July 2011. To investigate the heavy rainfall system, we used three-dimensional data from Korea Local Analysis and Prediction System (KLAPS) reanalysis data and analysed the structure of the precipitation system, kinematic characteristics, thermodynamic properties, and Meteorological condition. The existence of Upper-Level Jet (ULJ) and Low-Level Jet (LLJ) are accelerated the heavy rainfall. Convective cloud developed when a strong southwesterly LLJ and strong moisture convergence occurring around the time of the heavy rainfall is consistent with the results of previous studies on such continuous production. Environmental conditions included high equivalent potential temperature of over 355 K at low levels, and low equivalent potential temperature of under 330 K at middle levels, causing vertical instability. The tip of the band shaped precipitation system was made up of line-shaped convective systems (LSCSs) that caused flooding and landslides, and the LSCSs were continuously enhanced by merging between new cells and the pre-existing cell. Difference of wind direction between low and middle levels has also been considered an important factor favouring the occurrence of precipitation systems similar to LSCSs. Development of LSCs from the wind direction difference at heights of the severe precipitation occurrence area was also identified. This study can contribute to the identification of production and development mechanisms of heavy rainfall and can be used in applied research for prediction of severe weather.

Physical Properties of Aramid and Aramid/Nylon Hybrid ATY for Protective Garments according to the Dry and Wet Texturing Conditions (건·습 텍스쳐링 가공조건이 방호의류용 Aramid ATY와 Aramid/Nylon hybrid 사의 물성에 미치는 영향)

  • Park, Mi Ra;Kim, Hyun Ah;Kim, Seung Jin
    • Fashion & Textile Research Journal
    • /
    • v.15 no.3
    • /
    • pp.444-451
    • /
    • 2013
  • This paper surveys the physical properties of aramid and aramid/nylon hybrid air-jet textured yarns(ATY) for protective garments according to wet and dry texturing conditions. Aramid and nylon filaments were used to make two kinds of para-aramid ATY and four kinds of aramid/nylon hybrid ATY with dry and wet treatments. The analyzed physical properties of six specimens (made on the ATY machine) are as follows. The tenacity and initial modulus of aramid and aramid/nylon hybrid ATY decreased with the wetting and breaking strain; however, the yarn linear density of aramid and hybrid ATY increased with wetting treatment. The dry and wet thermal shrinkage of the hybrid ATY increased with wetting. The stability of aramid and hybrid ATY also increased with wetting. The physical properties of core/effect type hybrid ATY showed significantly more change than the core type hybrid ATY and the physical properties of nylon/aramid core/effect hybrid ATY showed significantly more change than the of aramid/nylon core/effect hybrid ATY. A higher bulky and breaking strain of hybrid ATY require ATY processing conditions of nylon on the core part with wetting and aramid on the effect part. ATY processing conditions for nylon and aramid on the core part with wetting are required for a higher tenacity and modulus. ATY processing conditions of nylon and aramid on the core with no wetting are required for a low thermal shrinkage.