• Title/Summary/Keyword: Jet Injection

Search Result 346, Processing Time 0.023 seconds

Numerical Investigation of 2DCD Nozzle Flow Having a Secondary Jet Injection for Thrust Vector Control (추력벡터제어를 위한 이차 분사유동이 있는 2DCD 노즐 내부의 수치적 연구)

  • Lee JinGyu;Chang KeunShik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.17-22
    • /
    • 2002
  • A numerical solution procedure has been developed to analyze the flow field resulted from the injection of a transverse jet through the divergent flap of a 2DCD nozzle for thrust vector control. The formulation employs the compressible Navier-Stokes equations in conservation law form and a two equation $\kappa-\omega$ turbulence model. Detailed numerical results are presented in this paper for the 2DCD nozzle over a range of secondary to primary injection mass flow ratios and nozzle pressure ratios.

  • PDF

Effects of Inner Jet Injection on Particle Deposition in the Annular Modified Chemical Vapor Deposition Process Using Concentric Tubes (환상형원관을 사용하는 수정된 화학증착(MCVD)방법에서 내부 제트분사가 입자부착에 미치는 영향)

  • 최만수;박경순
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.212-222
    • /
    • 1994
  • In the annular Modified Chemical Vapor Deposition process using two concentric tubes, the inner tube is heated to maintain high temperature gradients to have high thermophoretic force which can increase particle deposition efficiency. However, higher axial velocity in a narrow gap between inner and outer tubes can result in a longer tapered entry length. In the present paper, a new concept using an annular jet from the inner tube is presented and shown to significantly reduce the tapered entry length with maintaining high efficiency. Effects of a jet injection on heat transfer, fluid flow and particle deposition have been studied. Of particular interests are the effects of jet velocity, jet location and temperature on the deposition efficiency and tapered length . Torch heating effects from both the previous and present passes are included and the effect of surface radiation between inner and outer tubes is also considered.

Development of an Injection Nozzle and an Electromagnet Module for a MR Fluid Jet Polishing System (MR Fluid Jet Polishing 시스템을 위한 분사노즐 및 전자석 모듈 개발)

  • Lee, Jung-Won;Cho, Yong-Kyu;Ha, Seok-Jae;Shin, Bong-Cheol;Cho, Myeong-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.767-772
    • /
    • 2012
  • Generally, abrasive fluid jet polishing system has been used for polishing of complex shape or freeform surface which has steep local slopes. In the system, abrasive fluid jet is injected through a nozzle at high pressure; however, it is inevitable to lose its coherence as the jet exits a nozzle. This problem causes incorrect polishing results because of unstable and unpredictable workpiece material removal at the impact zone. In order to solve this problem, MR fluid jet polishing method has been developed using a mixture of abrasive and MR fluid which can maintain highly collimated and coherent jet by applied magnetic field. Thus, in this study, an injection nozzle and an electromagnetic module, most important parts in the MR polishing system, were designed and verified by magnetic field and flow analysis. As the results of experiments, it can be confirmed that stable fluid jets for polishing were generated since smooth W-shapes and uniform spot size were observed regardless of standoff distance changes.

Influence of Thermodynamic Properties upon Transcritical Nitrogen Injection

  • Tani, Hiroumi;Teramoto, Susumu;Nagashima, Toshio
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.320-329
    • /
    • 2008
  • The influence of thermodynamic transition associated with transcritical nitrogen injection upon the flow structure was investigated to explore numerical simulation of the injectant dynamics of oxygen/hydrogen coaxial jet in liquid rocket engines. Single and coaxial nitrogen jets were treated by comparing the transcritical and perfect-gaseous conditions, wherein the numerical model was accommodative to the real-fluid thermodynamics and transport properties at supercritical pressures. The model was in the first place validated by comparing the results of transcritical nitrogen injection between calculations and available experiments. For a single jet under the transcritical condition, the nitrogen kept a relatively high density up to its pseudo-critical temperature inside the mixing layer, since it remains less expanding until heated up to its pseudo-critical temperature. Numerical analysis revealed that cryogenic jets exhibit strong dependence of specific enthalpy profile upon the associated density profile that are both dominated by turbulent thermal diffusion. In the numerical model, therefore, exact evaluation of turbulent heat fluxes becomes very important for simulating turbulent cryogenic jets under supercritical pressures. Concerning the coaxial jets due to transcritical/gaseous nitrogen injections, the density profile inside the mixing layer was again affected by the thermodynamic transition of nitrogen. However, hydrodynamic instability modes of the inner jet did not show significant differences by this thermodynamic transition, so that further study is needed for the mixing process downstream of the near injection position.

  • PDF

The Effects of the Orifice Shapes on the Internal Visualization and The Spray Characteristics of the Single Hole Nozzle (오리피스 형상에 따른 단공 노즐의 내부 가시화와 분무 특성)

  • Son, Jong-Won;Cha, Keun-Jong;Kim, Duck-Jool
    • Journal of ILASS-Korea
    • /
    • v.7 no.1
    • /
    • pp.36-42
    • /
    • 2002
  • The objective of this investigation was to obtain an excellent spray at the low injection pressure. When cavitation occurred in the nozzle hole the atomization of the liquid jet enhanced considerably. In this experiments, a acrylic nozzle which was installed the gap and installed the bypass in the nozzle hole was used to enhance the atomization of the liquid jet at the few injection pressure. The liquid flow in the nozzle hole was photographed by a transmitted light using a micro flash. The spray angle was measured by macroscope images of PMAS and the Sauter mean diameter was measured by PDA system. The pressure of the notate hole was measured by pressure transducer. It was found that enhanced atomization of the liquid jet at the low injection pressure was obtained by installing the gap and the bypass at the single hole nozzle.

  • PDF

Heating type of die surface for removing weld line using high temperature air jet (웰드라인 제거를 위한 고온 기체 분사를 이용한 금형 표면의 가열기법)

  • Kim, Gyeong-Ha;Kim, Sun-Gyeong;Yu, Yeong-Eun;Jea, Tae-Jin;Choi, Du-Seon
    • Design & Manufacturing
    • /
    • v.2 no.2
    • /
    • pp.10-14
    • /
    • 2008
  • The application range of injection molded parts is expanding by the development of engineering plastics with good mechanical properties. Plastic products are specially used as automotive parts due to an excellent performance in the characteristics of a strength vs. weight. In this study, heating type of new method such as jet injection was applied to improve heat transfer coefficient is substituted for heating method of injection molding.

  • PDF

A Numerical Study on the Geometry of Jet Injection Nozzle of a Coanda Control Surface

  • Seo, Dae-Won;Kim, Jong-Hyun;Kim, Hyo-Chul;Lee, Seung-Hee
    • Journal of Ship and Ocean Technology
    • /
    • v.12 no.3
    • /
    • pp.36-54
    • /
    • 2008
  • A jet stream applied tangential to a curved surface in fluid increases lift force by strengthening circulation around the surface and this phenomenon is known as the Coanda effect. Many experimental and numerical studies have been performed on the Coanda effect and the results found to be useful in various fields of aerodynamics. Recently, preliminary studies on Coanda control surface are in progress to look for practical application in marine hydrodynamics since various control surfaces are used to control behaviors of ships and offshore structures. In the present study, the performance of a Coanda control surface with different geometries of the jet injection nozzle was surveyed to assess applicability to ship rudders. A numerical simulation was carried out to study flow characteristics around a section of a horn type rudder subjected to a tangential jet stream. The RANS equations, discretized by a cell-centered finite volume method were used for this computation after verification by comparing to the experimental data available. Special attentions have been given to the sensitivity of the lift performance of a Coanda rudder to the location of the slit (outlet) and intake of the gap between the horn and rudder surface at the various angles of attack. It is found that the location of the water intake is important in enhancing the lift because the gap functions as a conduit of nozzle generating a jet sheet on the rudder surface.

A Study on an Atomization Model of a High-Pressurized Liquid Jet with a Stability Theory (안정성 이론을 이용한 고압 분사 액체 제트의 미립화 모델에 관한 연구)

  • Kim, Hong-Seok;Seong, Nak-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.6
    • /
    • pp.811-818
    • /
    • 2001
  • The wave characteristics for a non-reacting high-speed liquid jet were investigated using a linear stability theory. In this study, 2-D incompressible viscid momentum equation for a liquid jet was considered, and the effects of injection parameters, such as Weber number, Reynolds number, and density ratio, on the wave characteristics were investigated. With the wavelength obtained from the stability analysis, the atomization model was suggested. The droplet sizes after breakup were determined by the wavelengths of fast growing waves, and the mass of the shed droplets was determined by the breakup time derived by ORouke et al. It was found that in comparison with measurements of diesel fuel spray, the results of calculation had a similar trend of the decrease of overall SMD with the increase of Reynolds number.

A Study on the Combustion Characteristics of a Hybrid Cyclone Jet Combustor (하이브리드 사이클론 제트 연소기의 연소특성에 관한 연구)

  • Jung, Won-Suk;Hwang, Chul-Hong;Lee, Gyou-Young;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.149-155
    • /
    • 2002
  • A promising new approach to achieve low pollutants emission and improvement of flame stabilities is tested experimentally using a hybrid cyclone jet combustor employing both premixed and diffusion combustion mode, Three kind of nozzles are used for LNG(Liquified Natural Gas) as a fuel. The combustor is operated by two method, One is ATI(Air Tangential Injection) mode, generated swirl flow by air as general swirl combustor, and the other is PTI(Premixed gas Tangential Injection) mode, The PTI mode consists of diffusion flame of axial direction and premixed cyclone flame of tangential direction in order to stabilized the diffusion flame. The results showed that the stable region of the PTI mode is more larger than the ATI mode. In addition, the reduction of NOx emission in PTI mode, as compared with that for the ATI mode is at least 50% in stable region. Also, even using the low calorific fuel as $CO_2$-blended gas, the cyclone jet combustor has high performance of flame stability.

  • PDF

A Study on the Injection Characteristics of Direct Injection CNG Fuel (직접분사 CNG 연료의 분사특성에 관한 연구)

  • Lee, S.W.;Rogers, T.;Petersen, P.;Kim, I.G.;Kang, H.I.
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.6
    • /
    • pp.643-647
    • /
    • 2014
  • Two types of fuel supply method ar used in CNG vehicles. One is premixed ignition and the other is gas-jet ignition. In premixed ignition, the fuel is introduced with intake air so that homogeneous air-fuel mixture may form. The ignitability of this method depends on the global equivalence ratio. In gas-jet ignition, CNG is introduced directly into the engine combustion chamber. The overall mixture is stratified by retarded fuel injection. In this study, a visualization technique was employed to obtain fundamental properties regarding overall mixture formation of direct injected CNG fuel inside a constant volume chamber. Jet angles, penetrations and projected jet area with respect to ambient pressure are investigated. The penetration decreases apparently and the time reaching the CVC wall was delayed as the chamber pressure increases. This is caused by the higher inertia of the fluid elements that the injected fluid must accelerate and push aside. It is same to liquid fuel such as diesel and gasoline, but this phenomenon is far more prominent for the gaseous fuel.