• Title/Summary/Keyword: Jeong Jiyong

Search Result 10, Processing Time 0.028 seconds

A Study on the Gamification Technology Valuation Framework (게이미피케이션 기술 가치 평가 프레임워크 연구)

  • Baek, Junho;Jang, Jintae;Jeong, Jiyong;Kim, Sangkyun
    • Journal of Korea Game Society
    • /
    • v.18 no.3
    • /
    • pp.17-26
    • /
    • 2018
  • As the concept of experience economy has been accelerated recently, user experience is more emphasized today, most of all. And related representative keywords are gamification. Gamification characterized by that intangible elements are produced and consumed through various interactions between providers and users and by having a structure that is difficult to generalize and objectify to economic value. Therefore, the purpose of the present study is to develop a quantitative valuation indicator of concept and standardize the valuation formula covering economic value for gamification technology and overall framework from the perspective of evaluating economic values of intangible technologies such as of knowledge, design, contents, and service of a company.

Extract of high hydrostatic pressure-treated danshen (Salvia miltiorrhiza) ameliorates atherosclerosis via autophagy induction

  • Ko, Minjeong;Oh, Goo Taeg;Park, Jiyong;Kwon, Ho Jeong
    • BMB Reports
    • /
    • v.53 no.12
    • /
    • pp.652-657
    • /
    • 2020
  • Danshen (Salvia miltiorrhiza) is a traditional medicinal plant widely used in Asian countries for its pharmacological activities (e.g., amelioration of cardiovascular diseases). In this study, we investigated the anti-atherosclerotic activity of raw danshen root extract prepared using high hydrostatic pressure (HHP) at 550 MPa for 5 min and hot water extraction. This method was useful for elimination of bacteria from cultured danshen plants and for better extraction yield of active principles. The HHP-treated danshen extract (HDE) inhibited proliferation of human umbilical vein endothelial cells (HUVECs) and induced autophagy that was assessed by LC3 conversion and p62 degradation. HDE suppressed foam cell formation in oxLDL-induced RAW264.7 macrophages; lysosomal activity simultaneously increased, measured by acridine orange staining. HDE also reduced atherosclerotic plaque development in vivo in apolipoprotein E knock-out (ApoE-/-) mice fed a high cholesterol diet. Taken together, these results indicated that HDE exhibited anti-atherosclerotic activity via autophagy induction.

REQUIREMENTS FOR AUTOMATED CODE CHECKING FOR FIRE RESISTANCE AND EGRESS RULE USING BIM

  • Jiyong Jeong;Ghang Lee
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.316-322
    • /
    • 2009
  • The more repetitive, complex and objective the work, the more effective automation is. Code checking is an example of this. Checking building codes through a thick set of drawings is error-prone and time-consuming. In order to overcome this problem, several organizations have initiated efforts to automate building-code checking. Initiated study mainly focused on checking codes for invalidation, required size and crash, and then area of checkable codes have been expanding. But, it has not been considered for codes regarding anti-disaster/egress, which is also issued these days. This study is about how to automatically check codes for anti-disaster and egress based on Korea building codes. The codes can be categorized as five sections: egress way, material/capability, principals of evacuation, evacuation stairway and fire protection partition. To check automatically, there are problems, such as expression of codes for egress and limitation of extractable information from the BIM model. This paper shows what problems exist and assignments to be resolved. Also, current developing processes are presented, and suggestions are made about the direction for the work that remains.

  • PDF

Effect of Pre-Cycling Rate on the Passivating Ability of Surface Films on Li4Ti5O12 Electrodes

  • Jung, Jiwon;Hah, Hoe Jin;Lee, Tae jin;Lee, Jae Gil;Lee, Jeong Beom;Kim, Jongjung;Soon, Jiyong;Ryu, Ji Heon;Kim, Jae Jeong;Oh, Seung M.
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.15-24
    • /
    • 2017
  • A comparative study was performed on the passivating abilities of surface films generated on lithium titanate (LTO; $Li_4Ti_5O_{12}$) electrodes during pre-cycling at two different rates. The surface film deposited at a faster pre-cycling rate (i.e., 0.5 C) is irregularly shaped and unevenly covers the LTO electrode. Owing to the incomplete coverage of the protective film, this LTO electrode exhibits poor passivating ability. Additional electrolyte decomposition and concomitant film deposition occur during subsequent charge/discharge cycles. As a result of the thick surface film, severe cell polarization occurs and eventually causes cell failure. However, pre-cycling the Li/LTO cell at a slower rate (0.1 C) improves cell polarization and capacity retention; this occurs because the surface film uniformly covers the LTO electrode and provides strong passivation. Accordingly, there is no significant film deposition during subsequent charge/discharge cycling. Additionally, self-discharge is reduced during high-temperature storage.

A Genetic Algorithm and Discrete-Event Simulation Approach to the Dynamic Scheduling (유전 알고리즘과 시뮬레이션을 통한 동적 스케줄링)

  • Yoon, Sanghan;Lee, Jonghwan;Jung, Gwan-Young;Lee, Hyunsoo;Wie, Doyeong;Jeong, Jiyong;Seo, Yeongbok
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.36 no.4
    • /
    • pp.116-122
    • /
    • 2013
  • This study develops a dynamic scheduling model for parallel machine scheduling problem based on genetic algorithm (GA). GA combined with discrete event simulation to minimize the makespan and verifies the effectiveness of the developed model. This research consists of two stages. In the first stage, work sequence will be generated using GA, and the second stage developed work schedule applied to a real work area to verify that it could be executed in real work environment and remove the overlapping work, which causes bottleneck and long lead time. If not, go back to the first stage and develop another schedule until satisfied. Small size problem was experimented and suggested a reasonable schedule within limited resources. As a result of this research, work efficiency is increased, cycle time is decreased, and due date is satisfied within existed resources.

Optimizing Work-In-Process Parameter using Genetic Algorithm (유전 알고리즘을 이용한 Work-In-Process 수준 최적화)

  • Kim, Jungseop;Jeong, Jiyong;Lee, Jonghwan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.1
    • /
    • pp.79-86
    • /
    • 2017
  • This research focused on deciding optimal manufacturing WIP (Work-In-Process) limit for a small production system. Reducing WIP leads to stable capacity, better manufacturing flow and decrease inventory. WIP is the one of the important issue, since it can affect manufacturing area, like productivity and line efficiency and bottlenecks in manufacturing process. Several approaches implemented in this research. First, two strategies applied to decide WIP limit. One is roulette wheel selection and the other one is elite strategy. Second, for each strategy, JIT (Just In Time), CONWIP (Constant WIP), Gated Max WIP System and CWIPL (Critical WIP Loops) system applied to find a best material flow mechanism. Therefore, pull control system is preferred to control production line efficiently. In the production line, the WIP limit has been decided based on mathematical models or expert's decision. However, due to the complexity of the process or increase of the variables, it is difficult to obtain optimal WIP limit. To obtain an optimal WIP limit, GA applied in each material control system. When evaluating the performance of the result, fitness function is used by reflecting WIP parameter. Elite strategy showed better performance than roulette wheel selection when evaluating fitness value. Elite strategy reach to the optimal WIP limit faster than roulette wheel selection and generation time is short. For this reason, this study proposes a fast and reliable method for determining the WIP level by applying genetic algorithm to pull system based production process. This research showed that this method could be applied to a more complex production system.

Investigation of influences of mixing parameters on acoustoelastic coefficient of concrete using coda wave interferometry

  • Shin, Sung Woo;Lee, Jiyong;Kim, Jeong-Su;Shin, Joonwoo
    • Smart Structures and Systems
    • /
    • v.17 no.1
    • /
    • pp.73-89
    • /
    • 2016
  • The stress dependence of ultrasonic wave velocity is known as the acoustoelastic effect. This effect is useful for stress monitoring if the acoustoelastic coefficient of a subject medium is known. The acoustoelastic coefficients of metallic materials such as steel have been studied widely. However, the acoustoelastic coefficient of concrete has not been well understood yet. Basic constituents of concrete are water, cement, and aggregates. The mix proportion of those constituents greatly affects many mechanical and physical properties of concrete and so does the acoustoelastic coefficient of concrete. In this study, influence of the water-cement ratio (w/c ratio) and the fine-coarse aggregates ratio (fa/ta ratio) on the acoustoelastic coefficient of concrete was investigated. The w/c and the fa/ta ratios are important parameters in mix design and affect wave behaviors in concrete. Load-controlled uni-axial compression tests were performed on concrete specimens. Ultrasonic wave measurements were also performed during the compression tests. The stretching coda wave interferometry method was used to obtain the relative velocity change of ultrasonic waves with respect to the stress level of the specimens. From the experimental results, it was found that the w/c ratio greatly affects the acoustoelastic coefficient while the fa/ta ratio does not. The acoustoelastic coefficient increased from $0.003073MPa^{-1}$ to $0.005553MPa^{-1}$ when the w/c ratio was increased from 0.4 to 0.5. On the other hand, the acoustoelastic coefficient changed in small from $0.003606MPa^{-1}$ to $0.003801MPa^{-1}$ when the fa/ta ratio was increased from 0.3 to 0.5. Finally, it was also found that the relative velocity change has a linear relationship with the stress level of concrete.

Development of ginseng powder using high hydrostatic pressure treatment combined with UV-TiO2 photocatalysis

  • Lee, Hyunah;Shahbaz, Hafiz Muhammad;Ha, Namho;Kim, Jeong Un;Lee, Sang Jun;Park, Jiyong
    • Journal of Ginseng Research
    • /
    • v.44 no.1
    • /
    • pp.154-160
    • /
    • 2020
  • Background: Korean ginseng (Panax ginseng Meyer) powder is in rising demand because powder forms of foods are convenient to handle and are highly preservable. However, ginseng powder (GP) manufactured using the conventional process of air drying and dry milling suffers nutrient destruction and a lack of microbiological safety. The objective of this study was to prepare GP using a novel process comprised of UV-TiO2 photocatalysis (UVTP) as a prewashing step, wet grinding, high hydrostatic pressure (HHP), and freeze-drying treatments. Methods: The effects of UVTP and HHP treatments on the microbial population, ginsenoside concentration, and physiological characteristics of GP were evaluated. Results: When UVTP for 10 min and HHP at 600 MPa for 5 min were combined, initial 4.95 log CFU/g-fw counts of total aerobes in fresh ginseng were reduced to lower than the detection limit. The levels of 7 major ginsenosides in UVTP-HHP-treated GP were significantly higher than in untreated control samples. Stronger inhibitory effects against inflammatory mediator production and antioxidant activity were observed in UVTP-HHP-treated GP than in untreated samples. There were also no significant differences in CIELAB color values of UVTP-HHP-treated GP compared with untreated control samples. Conclusion: Combined processing of UVTP and HHP increased ginsenoside levels and enhanced the microbiological safety and physiological activity of GP.

RFID-Based Integrated Decision Making Framework for Resource Planning and Process Scheduling for a Pharmaceutical Intermediates Manufacturing Plant (의약품 중간체 생산 공정의 전사적 자원 관리 및 생산 계획 수립을 위한 최적 의사결정 시스템)

  • Jeong, Changjoo;Cho, Seolhee;Kim, Jiyong
    • Korean Chemical Engineering Research
    • /
    • v.58 no.3
    • /
    • pp.346-355
    • /
    • 2020
  • This study proposed a new optimization-based decision model for an enterprise resource planning and production scheduling of a pharmaceutical intermediates manufacturing plant. To do this work, we first define the inflow and outflow information as well as the model structure, and develop an optimization model to minimize the production time (i.e., makespan) using a mixed integer linear programing (MILP). The unique feature of the proposed model is that the optimal process scheduling is established based on real-time resource logistics information using a radio frequency identification (RFID) technology, thereby theoretically requiring no material inventories. essential information for process operation, such as the required amount of raw materials and estimated arrival timing to manufacturing plant, is used as logistics constraints in the optimization model to yield the optimal manufacturing scheduling to satisfy final production demands. We illustrated the capability of the proposed decision model by applying the optimization model to two scheduling problems in a real pharmaceutical intermediates manufacturing process. As a result, the optimal production schedule and raw materials order timing were identified to minimize the makespan while satisfying all the product demands.

A Study for Remediation of Railroad Ballast Gravel Using Dry Washing Method (건식세척기술을 이용한 철도 도상자갈 정화 연구)

  • Bae, Jiyong;Jeong, Taeyang;Kim, Jae Hun;Lee, Sang Tak;Joo, Hyung Soo;Oh, Seung-Taek;Cho, Youngmin;Park, Duckshin
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.3
    • /
    • pp.365-373
    • /
    • 2017
  • This study proposes a newly developed dry washing method for removing pollutants such as total petroleum hydrocarbon (TPH) and oxidized iron from the surface of ballast gravel. A batch-type dry washing method showed a good performance in a previous study. In this study, a continuous-type dry washing system, instead of a batch-type system, was prepared to improve the efficiency of the system. A drier and a separator were also applied to this system as pre-treatment process, and the performance of this system was evaluated. In this experiment, blasting media was blasted on the polluted gravels through 12 nozzles by a pressure of $5-6kg/cm^2$ for 20-30 mins to remove TPH and oxidized iron. It was found to be possible to remove 80-90% of TPH and oxidized iron by using this system. Several ways to improve the performance were suggested in this study.