• Title/Summary/Keyword: Jeju volcanic rock

Search Result 37, Processing Time 0.024 seconds

The Study on Geology and Volcanism in Jeju Island (I): Petrochemistry and $^{40}Ar/^{39}Ar$ Absolute ages of the Subsurface Volcanic Rock Cores from Boreholes in the Eastern Lowland of Jeiu Island (제주도의 지질과 화산활동에 관한 연구 (I): 동부지역 저지대 시추코어 화산암류의 암석화학 및 $^{40}Ar/^{39}Ar$ 절대연대)

  • Koh, Gi-Won;Park, Jun-Beom;Park, Yoon-Suk
    • Economic and Environmental Geology
    • /
    • v.41 no.1
    • /
    • pp.93-113
    • /
    • 2008
  • This study presents petrochemistry and $^{40}Ar/^{39}Ar$ absolute ages of subsurface volcanic rock cores from twenty(20) boreholes in the eastern lowland (altitude loom below) of Jeju Island, Handeong-Jongdal-Udo-Susan-Samdal-Hacheon areas, and discusses topography and volcanism in the area. The subsurface volcanic rock cores are mainly basalts in composition with minor tholeiitic andesites and basaltic trachyandesites. Sequences of intercalated tholeiitic, transitional and alkalic lavas suggest that tholeiitic and transitional to alkalic lavas must have erupted contemporaneously. Especially, occurrences of trachybasalts and basaltic trachyandesites at the bases in the area imply that the volcanism in the area was initiated with slightly differentiated alkaline magma activity. The $^{40}Ar/^{39}Ar$ absolute ages of the subsurface volcanic rock cores range from $526{\pm}23ka\;to\;38{\pm}4Ka$. The lava-forming Hawaiian volcanic activities of the eastern lowland can be divided into five sequences on the basis of sediment distribution, whole rock geochemistry and $^{40}Ar/^{39}Ar$ absolute ages of the subsurface volcanic rock cores; stage I-U$(550{\sim}400Ka)$, stage II$(400{\sim}300Ka)$ and stage III$(300{\sim}200Ka)$ during syn-depositional stage of Seoguipo Formation, and stage IV$(200{\sim}100Ka)$ and stage V(younger than 100Ka) during post-depositional stage. In the eastern lowland of Jeju Island, compositional variations and local occurrences of the subsurface volcanic rocks as well as existences of various intercalated sediment layers (including hydrovolcanogenic clasts) suggest that the volcanism must have continued for long time intermittently and that the land has been progressively glowed from inland to coast by volcanic activities and sedimentation. It reveals that the subsurface volcanic rocks in the eastern lowland of Jeju Island must have erupted during relatively younger than 200Ka of stages IV and V. The results of this study are partly in contrast with those of previous studies. This study stresses the need that previous reported volcanic activities in Jeju Island based on K-Ar ages of volcanic rocks should be carefully reviewed, and that stratigraphic correlation from boreholes should be conducted by quantitative criteria combined with petrography and petrochemstry as well as radiometric studies of volcanic rock cores.

MÖssbauer Spectrum of Lava in Jeju Island (제주도 용암의 MÖssbauer 스펙트럼 연구)

  • Hong, Sung-Rak;Ko, Jeong-Dae;Choi, Won-Jun
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.6
    • /
    • pp.226-230
    • /
    • 2003
  • In this study, we analyzed the volcanic rock and scoria samples taken from special sites of Jeju island in two ways at the room temperature. One is the analysis of the chemical composition using X-ray fluorescence spectrometer, the other is the analysis of minerals in the samples, oxidized iron's genus, valence state and magnetic properties using X-ray diffractometry and Mossbauer spectroscopy. We believe that the volcanic rock and scoria samples are chiefly made of silicate minerals, like SiO$_2$, and they also have olivine, pyroxene, ilmenite, hematite and magnetite. The major Fe fractions of the volcanic rock samples are 2+ charge state and those of the scoria samples are 3+ charge state.

Physical Properties of Volcanic Rocks in Jeju-Ulleung Area as Aggregates (제주도 및 울릉도에서 산출되는 화산암의 골재로서의 물성 특징)

  • Byoung-Woon You;Chul-Seoung Baek;Kye-Young Joo
    • Economic and Environmental Geology
    • /
    • v.57 no.2
    • /
    • pp.205-217
    • /
    • 2024
  • This study evaluated the physical characteristics and quality of volcanic rocks distributed in the Jeju Island-Ulleung Island area as aggregate resources. The main rocks in the Jeju Island area include conglomerate, volcanic rock, and volcanic rock. Conglomerate is composed of yellow-red or gray heterogeneous sedimentary rock, conglomerate, and encapsulated conglomerate in a state between lavas. Volcanic rocks are classified according to their chemical composition into basalt, trachybasalt, basaltic trachytic andesite, trachytic andesite, and trachyte. By stratigraphy, from bottom to top, Seogwipo Formation, trachyte andesite, trachybasalt (I), basalt (I), trachybasalt (II), basalt (II), trachybasalt (III, IV), trachyte, trachybasalt (V, VI), basalt (III), and trachybasalt (VII, VIII). The bedrock of the Ulleung Island is composed of basalt, trachyte, trachytic basalt, and trachytic andesite, and some phonolite and tuffaceous clastic volcanic sedimentary rock. Aggregate quality evaluation factors of these rocks included soundness, resistance to abrasion, absorption rate, absolute dry density and alkali aggregate reactivity. Most volcanic rock quality results in the study area were found to satisfy aggregate quality standards, and differences in physical properties and quality were observed depending on the area. Resistance to abrasion and absolute dry density have similar distribution ranges, but Ulleung Island showed better soundness and Jeju Island showed better absorption rate. Overall, Jeju Island showed better quality as aggregate. In addition, the alkaline aggregate reactivity test results showed that harmless aggregates existed in both area, but Ulleungdo volcanic rock was found to be more advantageous than Jeju Island volcanic rock. Aggregate quality testing is typically performed simply for each gravel, but even similar rocks can vary depending on their geological origin and mineral composition. Therefore, when evaluating and analyzing aggregate resources, it will be possible to use them more efficiently if the petrological-mineralological research is performed together.

An Experimental Study on the Availability of Underground Air Energy Source in Non-Activity Volcanic Island (비활성 화산지역의 지중공기열원 에너지 이용에 관한 실험적 연구)

  • Kim, Yong-Hwan;Park, Sung-Seek;Kim, Woo-Jung;Kim, Nam-Jin;Hyun, Myung-Taek
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.5
    • /
    • pp.73-80
    • /
    • 2014
  • This study introduces and analyzes the geothermal energy availability in Non-active volcanic region. Jeju island in Korea is situated in non-active volcanic region. The island is composed of rock with high pore and clinker, scoria geological layer formed by volcanic activity about two million ago. Volcanic geological layers with porous characteristics have air, vapor, water and a underground structure through which air or water can move easily. For this reason, it is probable that the mechanism of energy acquisition is by convective heat transfer. For this presumption, the availability of underground air as energy source has been studied here through theoretical analysis and experimental data. The energy output of our system ranged from 2,485,076 kJ/day to 4,060,978 kJ/day monitored using variable velocity air flow controller. Our system has capability to be a reliable energy source irrespective of environmental changes. Consequently, underground air can be utilized for energy source and provide the optimal design of heating/cooling system.

Mechanical Properties of Filling Materials for Bored Pile in Rock (암반매입말뚝을 위한 주면고정액의 역학적 특성)

  • Moon, Kyoungtae;Park, Sangyeol;Shin, Mingun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.4
    • /
    • pp.637-645
    • /
    • 2017
  • Jeju Island is composed of irregular volcanic rock layers formed by several volcanic activities. Since structure such as the offshore wind turbine has to support considerably large over turning moment due to long distance from foundation to load point and relatively large horizontal load. Pile foundations are needed to economically support such structure even in the case of rock layer. Therefore, in this study, mechanical performances are estimated by mixing ratio of water, cement, and sand to figure out optimal mixing ration of filling material for pile penetrated to rocky layers, and outcomes of this study are compared and analyzed with results of other researches. In the same conditions, mechanical performances of the mortar (S/(S+C)=20~40%) are better than those of cement paste and soil cement. On the basis of major outcome of this study, appropriate range of mixing and a strengthening model are suggested.

Adsorption Characteristics of Cu Ions by Zeolite Na-A Synthesized from Jeju Volcanic Rocks (제주 화산석으로부터 합성한 Na-A 제올라이트에 의한 Cu 이온의 흡착 특성)

  • Ju, Chang-Sik;Lee, Chang-Han;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.27 no.5
    • /
    • pp.299-308
    • /
    • 2018
  • The adsorption characteristics of Cu ions were studied using the zeolite Na-A synthesized from Jeju volcanic rocks. The effects of various operating parameters such as initial concentration of Cu ions, contact time, solution pH, and solution temperature were investigated in batch experiments. The adsorption of Cu ions by Na-A zeolite was fitted well by pseudo-second-order kinetics and the Langmuir isotherm model. The maximum adsorption capacity determined using the Langmuir isotherm model was 152.95 mg/g. In addition, the adsorption of Cu ions by zeolite Na-A was primarily controlled by particle diffusion model in comparison with the film diffusion model. As the temperature increased from 303 K to 323 K, ${\Delta}G^o$ decreased from -2.22 kJ/mol to -3.41 kJ/mol, indicating that the adsorption of Cu ions by Na-A zeolite is spontaneous process.

A Study on p-y Curves with Pressuremeter Tests in Jeju Basalt Rock (공내재하시험을 이용한 제주 현무암의 p-y 곡선 연구)

  • Yang, Ki-Ho;Huh, Jong-Chul;Park, Jeong-Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.4
    • /
    • pp.129-137
    • /
    • 2015
  • Recently, offshore wind farms are increasingly expected, because there are huge resource and large site in offshore. Jeju island has optimum condition for constructing a wind energy farm. Unlike the mainland, Jeju island has stratified structure distribution between rock layers sediments due to volcanic activation. In these case, it can be occur engineering problems in whole structures as well as the safety of foundation as the thickness and distribution of sediment under top rock layer can not support sufficiently the structure. One of the most obvious applications of the pressuremeter test is the solution of the problem of laterally loaded piles. A hyperbolic non-linear p-y criterion for rock is developed in this study that can be used in LPILE program, to predict the deflection, moment, and shear reponses of a shaft under the applied lateral loads. Finally, a comparison between the predicted and measured response at two different sites is shown to give an idea of the accuracy of the IFP method.

Removal of Cu and Sr Ions using Adsorbent Obtained by Immobilizing Zeolite Synthesized from Jeju Volcanic Rocks in Polyacrylonitrile (제주 화산석으로 합성한 제올라이트를 Polyacrylonitrile에 고정화한 흡착제를 이용한 구리와 스트론튬 이온의 제거)

  • Lee, Chang-Han;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.27 no.12
    • /
    • pp.1215-1226
    • /
    • 2018
  • In this study, PAN-SZ (polyacrylonitrile scoria zeolite) beads were prepared by immobilizing Na-A zeolite (SZ-A) synthesized from Jeju volcanic rocks (scoria) on the polymer PAN. FT-IR and TGA analysis results confirmed that the SZ-A was immobilized in the PAN-SZ beads. SEM images showed that the PAN-SZ beads are a spherical shape with 2 mm diameter and exhibit a porous inner structure inside the bead. The most suitable mixing ratio of PAN to SZ-A as the adsorbent for removing Sr ions was PAN/SZ-A = 0.2 g/0.3 g. The adsorption kinetic data for Cu and Sr ions were fitted well with the pseudo-second-order model. The Cu and Sr ion uptakes followed a Langmuir isotherm model and the maximum adsorption capacities at $20^{\circ}C$ were 84.03 mg/g and 75.19 mg/g, respectively. The amount of Sr ion adsorbed by SZ-A on the PAN-SZ beads was about 160 mg/g, which was similar to that adsorbed by SZ-A powder. Thus, the PAN-SZ beads prepared in this study are considered to be effective adsorbents for removing metal ions in aqueous solutions.

Occurrence of Vanadium in Groundwater of Jeju Island, Korea (제주도 지하수 내 바나듐의 산출 특성)

  • Hyun, Ik-Hyun;Yun, Seong-Taek;Kim, Ho-Rim;Kam, Sang-Kyu
    • Journal of Environmental Science International
    • /
    • v.25 no.11
    • /
    • pp.1563-1573
    • /
    • 2016
  • The aim of this study was to evaluate the occurrence of vanadium in Jeju Island groundwater, focusing on the spatio-temporal patterns and geochemical controlling factors of vanadium. For this, we collected two sets of groundwater data: 1) concentrations of major constituents of 2,595 groundwater samples between 2008 and 2014 and 2) 258 groundwater samples between December 2006 and June 2008. The concentrations of groundwater vanadium were in the range of $0.2{\sim}71.0{\mu}g/L$ (average, $12.0{\mu}g/L$) and showed local enrichments without temporal/seasonal variation. This indicated that vanadium distribution was controlled by 1) the geochemical/mineralogical composition and dissolution processes of original materials (i.e., volcanic rock) and 2) the flow and chemical properties of groundwater. Vanadium concentration was significantly positively correlated with that of major ions ($Cl^-$, $Na^+$, and $K^+$) and trace metals (As, Cr, and Al), and with pH, but was negatively correlated with $NO_3-N$ concentration. The high concentrations of vanadium (>$15{\mu}g/L$) occurred in typically alkaline groundwater with high pH (${\geq}8.0$), indicating that a higher degree of water-rock interaction resulted in vanadium enrichment. Thus, higher concentrations of vanadium occurred in groundwater of $Na-Ca-HCO_3$, $Na-Mg-HCO_3$ and $Na-HCO_3$ types and were remarkably lower in groundwater of $Na-Ca-NO_3$(Cl) type that represented the influences from anthropogenic pollution.

Distribution Characteristics of Uranium and Radon Concentration in Groundwaters of Provinces in Korea (지역별 지하수중 우라늄과 라돈의 함량 분포 특성)

  • Jeong, Do-Hwan;Kim, Moon-Su;Ju, Byoung-Kyu;Kim, Tae-Seung
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.6
    • /
    • pp.143-149
    • /
    • 2011
  • In order to figure out the characteristics of radionuclides concentrations of nine provinces, we analyzed uranium and radon in 681 samples of groundwater. Most of uranium concentrations in each province were less than $10{\mu}g/L$, and Gyeongnam, Jeonnam, Jeju provinces did not have groundwaters exceeding the US EPA drinking water MCL ($30{\mu}g/L$) of uranium. The ratio of radon values exceeding US EPA drinking water AMCL (4,000 pCi/L) was 22.6% (154/681) and Gyeongnam and Jeju provinces had no groundwaters exceeding the AMCL (alternative maximum contaminant level). Uranium and radon concentrations in groundwaters of Gyeonggi, Chungbuk, Jeonbuk, Chungnam mainly composed of the Mesozoic granite and the Precambrian gneiss were relatively high, but the concentrations of Gyeongnam and Jeju widely comprised of the sedimentary rock and the volcanic rock were relatively low. A week correlation between uranium and radon values showed in Gangwon, Chungbuk, Gyeonggi provinces.