Browse > Article
http://dx.doi.org/10.5322/JESI.2016.25.11.1563

Occurrence of Vanadium in Groundwater of Jeju Island, Korea  

Hyun, Ik-Hyun (Research Institute of Health & Environment, Jeju Special-Governing Province)
Yun, Seong-Taek (Department of Earth and Environmental Sciences and KU-KIST Green School, Korea University)
Kim, Ho-Rim (Department of Earth and Environmental Sciences and KU-KIST Green School, Korea University)
Kam, Sang-Kyu (Department of Environmental Engineering, Jeju National University)
Publication Information
Journal of Environmental Science International / v.25, no.11, 2016 , pp. 1563-1573 More about this Journal
Abstract
The aim of this study was to evaluate the occurrence of vanadium in Jeju Island groundwater, focusing on the spatio-temporal patterns and geochemical controlling factors of vanadium. For this, we collected two sets of groundwater data: 1) concentrations of major constituents of 2,595 groundwater samples between 2008 and 2014 and 2) 258 groundwater samples between December 2006 and June 2008. The concentrations of groundwater vanadium were in the range of $0.2{\sim}71.0{\mu}g/L$ (average, $12.0{\mu}g/L$) and showed local enrichments without temporal/seasonal variation. This indicated that vanadium distribution was controlled by 1) the geochemical/mineralogical composition and dissolution processes of original materials (i.e., volcanic rock) and 2) the flow and chemical properties of groundwater. Vanadium concentration was significantly positively correlated with that of major ions ($Cl^-$, $Na^+$, and $K^+$) and trace metals (As, Cr, and Al), and with pH, but was negatively correlated with $NO_3-N$ concentration. The high concentrations of vanadium (>$15{\mu}g/L$) occurred in typically alkaline groundwater with high pH (${\geq}8.0$), indicating that a higher degree of water-rock interaction resulted in vanadium enrichment. Thus, higher concentrations of vanadium occurred in groundwater of $Na-Ca-HCO_3$, $Na-Mg-HCO_3$ and $Na-HCO_3$ types and were remarkably lower in groundwater of $Na-Ca-NO_3$(Cl) type that represented the influences from anthropogenic pollution.
Keywords
Vanadium; Jeju Island groundwater; Occurrence; Geochemical controls; Water type; Water-rock interaction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Breit, G. N., Wanty, R. B., 1991, Vanadium accumulation in carbonaceous rocks: A review of geochemixal controls during deposition and diagenesis, Chem. Geol., 91(2), 83-97.   DOI
2 Emerson, S. R., Huested, S. S., 1991, Ocean anoxia and the concentrations of molybdenum and vanadium in seawater, Marine Chem., 34(3-4), 177-196.   DOI
3 Fiorentino, C. E., Paoloni, J. D., Sequeira, M. E., Arosteguy, P., 2007, The presence of vanadium in groundwater of southeastern extreme the Pampean region, Argentina: Relationship with other chemical elements, J. Contam. Hydrol., 93(1-4), 122-129.   DOI
4 Giammanco, S., Valenza, M., Pignato, S., Giammanco, G., 1996, Mg, Mn, Fe, and V concentrations in the ground waters of Mount Etan (Siclil), Water Res., 30(2), 378-386.   DOI
5 Greenwood, N. N., Earnshaw, A., 1997, Chemistry of the elements, Butterworth-Heinemann, Oxford, 1600.
6 Hope, B. K., 1997, An assessment of the global impact of anthropogenic vanadium, Biogeochem., 37(1), 1-13.   DOI
7 Jeju, 2015, http://www.jejuwater.go.kr/contents/index
8 Jeong, J. E., Ji, H. S., Kim, B. G., Han, S. M., Kim, S. Y., Kwon, K. W., 2011, Functional mineral characteristics of groundwater in Busan area, The Annual Report of Busan Metropolitan City Institute of Health & Environment, 20(1), 88-109.
9 Jiang, J. F., Hao, G. L., Effect of 2004, Effect of vanadium in nutrition, Feed Ind., 25, 29-32.
10 Jung, H. W., Yun, S. T., Kim, K. H., Oh, S. S., Kang, K. G., 2014, Role of an impermeable layer in controlling groundwater chemistry in a basaltic aquifer beneath an agricultural field, Jeju Island, South Korea, Appl. Geochem., 45, 82-93.   DOI
11 Koh, D. C., Chang, H. W., Lee, K. S., Ko, K. S., Kim, Y., Park, W. B., 2005, Hydrogeochemistry and environ -mental isotopes of groundwater in Jeju volcanic island, Korea: Implications for nitrate contamination, Hydrol. Proc., 19(11), 2225-2245.   DOI
12 Koshimizu, S., Tomura, K., 2000, Geochemical behavior of trace vanadium in the spring, groundwater and lake water at the foot of Mt. Fuji, central Japan, in: Sato, K. and Iwasa, Y. (eds.), Groundwater Updates, Springer Japan, 171-176.
13 Leung, C. M., Jiao, J. J., 2005, Heavy metal and trace element distributions in groundwater in natural slopes and highly urbanized spaces in Mid-Levels area, Hong Kong, Water Res., 40(4), 753-767.   DOI
14 Linstedt, K. D., Kruger, P., 1970, Determination of vanadium in natural waters by neutron activation analysis, Anal. Chem., 42(1), 113-115.   DOI
15 Lowenthal, D. H., Borys, R. D., Cow, J. C., Rogers, F., 1992, Evidence for long-range transport of aerosol from the Kuwaiti Oil fires to Hawaii, J. Geophy. Res., 97(D13), 14573-14580.   DOI
16 Lu, X., Johnson, W. D., Hook, J., 1998, Reaction of vanadate with aquatic humic substances: An ESR and 51V NMR study, Environ. Sci. & Technol., 32(15), 2257-2263.   DOI
17 Park, K. H., Cho, D. L., Kim, Y. B., Kim, J. C., Cho, B. W., Jang, Y. N., Lee, S. R., Son, B. K., Cheon, H. Y., Lee, H. Y., Kim, Y. U., 2000, Geologic report of the Seogwipo-Hahyori sheet (1:50,000), Jeju Provincial Government, 163.
18 Misund, A., Frengstad, B., Siewers, U., Reimann, C., 1999, Variation of 66 elements in European bottled mineral waters, Sci. Total Environ., 243-244, 21-41.   DOI
19 Moskalyk, R. R., Alfanti, A. M., 2003, Processing of vanadium: A review, Minerals Eng., 16(9), 793-805.   DOI
20 Nriagu, J. O., 1998, History, occurrence, and use of vanadium, in: Nriagu, J. O. (ed.), Vanadium in the Environment, Part 1: Chemistry and Biochemistry, John Wiley & Sons Inc., New York, 1-24.
21 Rehder, D., 2003, Biological and medicinal aspects of vanadium, Inorg. Chem. Commun., 6(5), 604-617.   DOI
22 Ruhling, A., Tyler, G., 2001, Changes in atmospheric deposition rates of heavy metals in Sweden: A summary of nationwide Swedish surveys in 1968/70-1995, Water, Air and Soil Pollution: Focus 1, 311-323.   DOI
23 Shiller, A. M., 1997, Dissolved trace elements in the Mississipi River; seasonal and decadal variability, Geochim. Cosmochim. Acta, 61(20), 4321-4330.   DOI
24 Shiller, A. M., Boyle, E. A., 1987, Dissolved vanadium in rivers and estuaries, Earth Planet. Sci. Lett., 86(2-4), 214-224.   DOI
25 Shiller, A. M., Mao, L., 2000, Dissolved vanadium in rivers: Effect of silicate weathering, Chem. Geol., 165(1-2), 13-22.   DOI
26 Wang, D., Wilhelmy, S. A. S., 2009, Vanadium speciation and cycling in coastal waters, Marine Chem., 117(1-4), 52-58.   DOI
27 Song, Y. C., Oh, S. S., Hyun, I. H., Oh, T. G., Kim, S. M., 2009, Distribution of vital mineral groundwater, Report of Jeju Special Self-Governing Provincial Environmental Resources Institute, 2, 254-267.
28 Sugiyama, M., 1989, Seasonal variation of vanadium concentration in Lake Biwa, Japan, Geochem. J., 23(3), 111-116.   DOI
29 Szalay, A., Szilagyi, M., 1967, The association of vanadium with humic acids, Geochim. Cosmochim. Acta, 31(1), 1-6.   DOI
30 Wanty, R. B., Goldhaber, M. B., 1992, Thermodynamics and kinetics of reactions involving vanadium in natural systems: Accmulation of vanadium in sedimentary rocks, Geochim. Cosmochim. Acta, 56(4), 1471-1483.   DOI
31 Wehrli, B., Stumm, W., 1989, Vanadyl in natural waters: Adsorption and hydrolysis promote oxygenation, Geochim. Cosmochim. Acta, 53(1), 69-77.   DOI
32 Won, J. H., Lee, J. Y., Kim, J. W., Koh, G. W., 2006, Groundwater occurrence on Jeju Island, Korea, Hydrogeol. J., 14(4), 532-547.   DOI
33 Wright, M. T., Belitz, K., 2010, Factors controlling the regional distribution of vanadium in groundwater, Groundwater, 48(4), 515-525.   DOI
34 Filby, R. H., Yen, T. F., 1975, The role of trace metals in petroleum, Ann Arbor Science Publishers Inc., Ann Arbor, MI.