• Title/Summary/Keyword: Jeju Island groundwater

Search Result 158, Processing Time 0.026 seconds

A Study on the Appropriate Size of Large Rainwater Utilizing Facilities and Estimation of Agricultural Water Availability in Namwon eup, Jeju Island (제주도 남원읍지역 대용량 빗물이용시설의 적정규모 및 농업용수 공급 가능량 산정 연구)

  • Kim, Minchul;Park, Wonbae;Kang, Bongrae
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.1
    • /
    • pp.84-94
    • /
    • 2020
  • Jeju Island is seeking reliable ways to secure alternative water resources using rainwater in order to conserve and manage its groundwater as sustainable water resources. The purpose of this study is to investigate the rainwater storage capability of small-size storage facilities installed at farmhouses in Uigwi and Wimi of Namwon-eup region. The rainwater outflows from the storage facilities in rain events were analyzed. The appropriate size of rainwater utilizing facilities are suggested to be about 5,800 ㎥ in Uigwi area and 4,900 ㎥ in Wimi area based on the calculation from the rainfall frequency and runoff amounts. If those facilities are put into operation in Uigwi and Wimi area, it is estimated approximately 32.3 and 11.5% of total agricultural water can be supplied by the facilities. Wimi area showed low rainwater usage because of less number of facilities relative to the size of farm areas and less intensive underground water usage. It is analyzed that more than 55% of agricultural water can be supplied by rainwater if 70 facilities without the rainwater facilities are connected to the rainwater utilizing facilities.

Occurrence of Vanadium in Groundwater of Jeju Island, Korea (제주도 지하수 내 바나듐의 산출 특성)

  • Hyun, Ik-Hyun;Yun, Seong-Taek;Kim, Ho-Rim;Kam, Sang-Kyu
    • Journal of Environmental Science International
    • /
    • v.25 no.11
    • /
    • pp.1563-1573
    • /
    • 2016
  • The aim of this study was to evaluate the occurrence of vanadium in Jeju Island groundwater, focusing on the spatio-temporal patterns and geochemical controlling factors of vanadium. For this, we collected two sets of groundwater data: 1) concentrations of major constituents of 2,595 groundwater samples between 2008 and 2014 and 2) 258 groundwater samples between December 2006 and June 2008. The concentrations of groundwater vanadium were in the range of $0.2{\sim}71.0{\mu}g/L$ (average, $12.0{\mu}g/L$) and showed local enrichments without temporal/seasonal variation. This indicated that vanadium distribution was controlled by 1) the geochemical/mineralogical composition and dissolution processes of original materials (i.e., volcanic rock) and 2) the flow and chemical properties of groundwater. Vanadium concentration was significantly positively correlated with that of major ions ($Cl^-$, $Na^+$, and $K^+$) and trace metals (As, Cr, and Al), and with pH, but was negatively correlated with $NO_3-N$ concentration. The high concentrations of vanadium (>$15{\mu}g/L$) occurred in typically alkaline groundwater with high pH (${\geq}8.0$), indicating that a higher degree of water-rock interaction resulted in vanadium enrichment. Thus, higher concentrations of vanadium occurred in groundwater of $Na-Ca-HCO_3$, $Na-Mg-HCO_3$ and $Na-HCO_3$ types and were remarkably lower in groundwater of $Na-Ca-NO_3$(Cl) type that represented the influences from anthropogenic pollution.

Application and Assesment of Regrouting Method for Improperly Constructed Wells in Jeju Island (제주도의 오염 방지 시공이 부실한 지하수 관정에 대한 구간 차폐 공법의 적용과 평가)

  • Kim, Mijin;Kang, BongRae;Cho, Heuy Nam;Choi, Sung Ouk;Yang, Won-Seok;Park, Wonbae
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.3
    • /
    • pp.43-51
    • /
    • 2020
  • About 90% of groundwater wells in Jeju Island are reported to be under the threat of contamination by infiltration of the surface pollutants. Most of those wells have improperly grouted annulus which is an empty space between the well and the inner casing. As a remedy to this problem, some of the wells were re-grouted by filling the annulus with cement without lifting an inner casing. In order to evaluate whether this method is appropriate for the geological structure of Jeju Island, two wells (W1 and W2) were selected and this method was applied. The water holding capacity did not decrease while the nitrate levels decreased from 16.8 and 20.2 to 6.8 and 13.8 mg/L in W1 and W2, respectively. The higher nitrate level in W2 is deemed to be influenced by the livestock farms located in the upper area of the well. In addition, transmissivity of the vedose zone was higher in W2 than W1, potentially facilitating the transport of nitrate to the groundwater. The overall result of this study suggests re-grouting of wells for the purpose of protecting water quality of goundwater should take into account geological structure of vadose zone as well as appropriate source control of the contaminants.

Analysis of Groundwater Level Changes Due to Earthquake in Jeju Island (For the Indonesian Earthquake with Magnitude 7.7 in 2010) (지진에 의한 제주도 지하수위 변동 분석 (2010년 인도네시아 규모 7.7 지진))

  • Lee, Soo-Hyoung;Hamm, Se-Yeong;Ha, Kyoo-Chul;Kim, Yong-Cheol;Cheong, Beom-Keun;Ko, Kyung-Seok;Koh, Gi-Won;Kim, Gee-Pyo
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.2
    • /
    • pp.41-51
    • /
    • 2011
  • This study was conducted to investigate the relationship between groundwater level change and a large earthquake using the data of groundwater and seawater intrusion monitoring wells in Jeju Island. Groundwater level data from 13 observation wells were analyzed with a large earthquake. The Earthquake occurred at Sumatra, Indonesia (Mw = 7.7) on 13 June 2010, and groundwater level anomalies which seems to be related to the Earthquake were found in 6 monitoring wells. They lasted for approximately 16~27 minutes and the range of groundwater level fluctuations were about 1.4~2.4 cm. Coefficient of determination values for relationship between groundwater level change and transmissivity, and response time were calculated to be $R^2$ = 0.76 and $R^2$ = 0.96, respectively. The study also indicates that the high transmissivity of aquifer showed the high goundwater level changes and longer response time.

Classification of Spring Types in the Western Coastal Area of Jeju Island, Korea, Based on the Hydrogeological Characteristics (수리지질 특성을 고려한 제주도 서부 해안지역 용천의 유형 분류)

  • Koh Chang-Seong;Koh Eun-Hee;Park Won-Bae;Koh Gi-Won
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.5
    • /
    • pp.25-35
    • /
    • 2023
  • This study aimed to classify spring types based on the hydrogeological characteristics of springs in Yongsu-ri~Hamo-ri coastal area in western part of Jeju Island. The springs in study area can be broadly categorized into three groups: perched groundwatrer springs (soil type), perched groundwater springs (sediment type), and basal groundwater springs. The perched groundwater springs of soil type correspond to springs where groundwater seeps out from the perched aquifer formed in the soil layer due to the development of clayey Kosan Formation beneath the surface. Because of the low hydraulic conductivity of soil layer, the average of spring discharge is less than 1 m3/day. The quality of spring water is significantly influenced by agricultural activities, resulting in high nitrate nitrogen concentrations and electrical conductivity. While the perched groundwater springs (sediment type) of the Suwolbong Tuff, which are located in the upper part of Kosan Formation, exhibited relatively higher discharge rates, their water quality was similar to soil-type springs. Basal groundwater springs are located in the zone of basal groundwater, mostly near the coastline. This type of spring appears to discharge of up to 3,707 m3, and the salinity content varies with the tidal fluctuations, especially increasing significantly during dry seasons.

Geophysical Well Logs in Basaltic Volcanic Area, Jeju Island (제주 현무암 지역에서 물리검층 자료 해석)

  • Hwang, Se-Ho;Shin, Je-Hyun;Park, Ki-Hwa;Park, In-Hwa;Koh, Gi-Won
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.3
    • /
    • pp.231-240
    • /
    • 2006
  • A variety of geophysical well loggings have been conducted to investigate the geological characteristics for basaltic volcanic area in Jeju Island. Specially, there is no precedent case study using geophysical well loggings in Jeju Island. And so, the proper understandings for geological features of Jeju Island are the key to interpret geophysical well logs. Presently, seawater intrusion monitoring systems have been constructed for systematic development and conservation of groundwater resources. As the results of geophysical well loggings in this seawater intrusion monitoring boreholes, the responses of well logs for saturated zone have distinctly identified basalt sequences. In particular, neutron logging, gamma-gamma (density) logging, and resistivity logging have well exhibited the characteristics of lava flows and lithologic boundaries. In hyalocastite, porosity is high, and resistivity is low. Eventually, geophysical well logs are useful for securing sustainable development of groundwater in Jeju Island in that it has identified the characteristics of geological responses.

The Study on Time Series Analysis of Groundwater Data and Groundwater Recharge in Jeju Island (제주도 수리자료에 대한 시계열 분석 및 지하수 함양률 추정 연구)

  • Choi, Hyun-Mi;Lee, Jin-Yong;Ha, Kyoo-Chul;Kim, Gee-Pyo
    • The Journal of Engineering Geology
    • /
    • v.21 no.4
    • /
    • pp.337-348
    • /
    • 2011
  • We examined temporal variations in and relationships among groundwater level, groundwater temperature, and electric conductivity, and estimated groundwater recharge at Jeju Island. The time lag and regulation time of groundwater level data revealed that monitoring well in Ansung (JM-AS) has the highest auto-correlation. The cross-correlations for electric conductivity-water level, precipitation-water level, and air temperature-water temperature revealed that monitoring well in Seogwi-2 (JR-SG2) (electric conductivity-water level), monitoring well in Hamo (JD-HM) (precipitation-water level), and monitoring well in Wonjongjang-2 (JT-WJJ2) (air temperature-water temperature) had the highest cross-correlations. The average groundwater recharge ratio was 39.61%, and the average groundwater recharge amount was 1,153,490,407 $m^3/yr$, which is consistent with the results of previous studies.

제주도 하천의 수위-유량 변동특성연구

  • 문덕철;하규철;고기원;박기화
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.422-425
    • /
    • 2004
  • To understand runoff Phenomena in Jeju island, some streams are monitored automatically about stream stage, and water quality in Jeju Provincial Water Resources Management Office. Rating curves for stream discharge are reviewed. Stream stages respond very quick to some rainfall events, and parameters influencing runoff phenomena such as landuse, soil condition, preconditoned rainfall, and vegetables will be studied. A few thousand to ten thousand ml/day are estimated from 6 permanent streams in Jeju island.

  • PDF

Analyzing Spatio-Temporal Variation of Groundwater Recharge in Jeju Island by using a Convolution Method (컨벌루션 기법을 이용한 제주도 지하수 함양량의 시공간적 변화 분석)

  • Shin, Kyung-Hee;Koo, Min-Ho;Chung, Il-Moon;Kim, Nam-Won;Kim, Gi-Pyo
    • Journal of Environmental Science International
    • /
    • v.23 no.4
    • /
    • pp.625-635
    • /
    • 2014
  • Temporal variation of groundwater levels in Jeju Island reveals time-delaying and dispersive process of recharge, mainly caused by the hydrogeological feature that thickness of the unsaturated zone is highly variable. Most groundwater flow models have limitations on delineating temporal variation of recharge, although it is a major component of the groundwater flow system. A new mathematical model was developed to generate time series of recharge from precipitation data. The model uses a convolution technique to simulate the time-delaying and dispersive process of recharge. The vertical velocity and the dispersivity are two parameters determining the time series of recharge for a given thickness of the unsaturated zone. The model determines two parameters by correlating the generated recharge time series with measured groundwater levels. The model was applied to observation wells of Jeju Island, and revealed distinctive variations of recharge depending on location of wells. The suggested model demonstrated capability of the convolution method in dealing with recharge undergoing the time-delaying and dispersive process. Therefore, it can be used in many groundwater flow models for generating a time series of recharge.