• 제목/요약/키워드: Jasmonic acid

검색결과 112건 처리시간 0.029초

Inoculation with Indole-3-Acetic Acid-Producing Rhizospheric Rhodobacter sphaeroides KE149 Augments Growth of Adzuki Bean Plants Under Water Stress

  • Kang, Sang-Mo;Adhikari, Arjun;Lee, Ko-Eun;Khan, Muhammad Aaqil;Khan, Abdul Latif;Shahzad, Raheem;Dhungana, Sanjeev Kumar;Lee, In-Jung
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권5호
    • /
    • pp.717-725
    • /
    • 2020
  • The use of plant growth-promoting rhizobacteria is economically viable and environmentally safe for mitigating various plant stresses. Abiotic stresses such as flood and drought are a serious threat to modern agriculture. In the present study, the indole-3-acetic acid-producing rhizobacterium R. sphaeroides KE149 was selected, and its effects on the growth of adzuki bean plants under flood stress (FS) and drought stress (DS) were investigated. IAA quantification of bacterial pure culture revealed that KE149 produced a significant amount of IAA. Moreover, KE149 inoculation notably decreased stress-responsive endogenous abscisic acid and jasmonic acid and increased salicylic acid in plants under DS and FS. KE149 inoculation also increased proline under DS and methionine under FS. In addition, KE149 inoculation significantly increased the levels of calcium (Ca), magnesium (Mg), and potassium (K) while lowering the sodium (Na) content in the plant shoot under stress. KE149-treated plants had markedly greater root length, shoot length, stem diameter, biomass, and higher chlorophyll content under both normal and stressed conditions. These results suggest that KE149 could be an efficient biofertilizer for mitigating water stress.

Identification of Putative MAPK Kinases in Oryza minuta and O. sativa Responsive to Biotic Stresses

  • You, Min Kyoung;Oh, Seung-Ick;Ok, Sung Han;Cho, Sung Ki;Shin, Hyun Young;Jeung, Ji Ung;Shin, Jeong Sheop
    • Molecules and Cells
    • /
    • 제23권1호
    • /
    • pp.108-114
    • /
    • 2007
  • The mitogen-activated protein kinase (MAPK) signaling cascade is critical for regulating plant defense systems against various kinds of pathogen and environmental stresses. One component of this cascade, the MAP kinase kinases (MAPKK), has not yet been shown to be induced in plants following biotic attacks, such as those by insects and fungi. We describe here a gene coding for a blast (Magnaporthe grisea)- and insect (Nilaparvata lugens)-responsive putative MAPK kinase, OmMKK1 (Oryza minuta MAPKK 1), which was identified in a library of O. minuta expressed sequence tags (ESTs). Two copies of OmMKK1 are present in the O. minuta genome. They encode a predicted protein with molecular mass 39 kDa and pI of 6.2. Transcript patterns following imbibition of plant hormones such as methyl jasmonic acid (MeJA), ethephone, salicylic acid (SA) and abscisic acid (ABA), as well as exposure to methyl viologen (MV), revealed that the expression of OmMKK1 is related to defense response signaling pathways. A comparative analysis of OmMKK1 and its O. sativa ortholog OsMKK1 showed that both were induced by stress-related hormones and biotic stresses, but that the kinetics of their responses differed despite their high amino acid sequence identity (96%).

OsF3H Gene Increases Insect Resistancy in Rice through Transcriptomic Changes and Regulation of Multiple Biosynthesis Pathways

  • Rahmatullah Jan;Saleem Asif;Kyung-Min Kim
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.287-287
    • /
    • 2022
  • In this study, we analyze RNA-seq data from OxF3Hand WT at several points (Oh, 3 h, 12 h, and 24 h) after WBPH infection. A number of the genes were further validated by RT-qPCR. Results revealed that highest number of DEGs (4,735) between the two genotypes detected after 24 h of infection. Interestingly, many of the DEGs between the WT and OsF3H under control conditions were also found to be differentially expressed in OsF3H in response to WBPH infestation. These results indicate that significant differences in gene expression between the "OxF3H" and "WT" exist as the infection time increases. Many of these DEGs were related to oxidoreductase activity, response to stress, salicylic acid biosynthesis, metabolic process, defense response to pathogen, cellular response to toxic substance, and regulation of hormones level. Moreover, genes involved in salicylic acid (SA) and Ethylene (Et) biosynthesis were upregulated in OxF3H plants while jasmonic acid (JA), Brassinosteroid (Br), and abscisic acid (ABA) signaling pathways were found downregulated in OxF3H plant during WBPH infestation. Interestingly, many DEGs related to pathogenesis such as OsPR1, OsPR1b, NPR1, OsNPR3 and OsNPR5 were found significantly upregulated in OxF3H plants. Additionally, genes related to MAPKs pathway, and about 30 WRKY genes involved in different pathways were found upregulated in OxF3H plants after WBPH infestation. This suggests that overexpression of the OxF3H gene leads to multiple transcriptomic changes and impact plant hormones, pathogenic related and secondary metabolites related genes and enhancing the plant resistance to WBPH infestation.

  • PDF

Biological Potential of Bioorganic Fertilizer Fortified with Bacterial Antagonist for the Control of Tomato Bacterial Wilt and the Promotion of Crop Yields

  • Wu, Kai;Fang, Zhiying;Wang, Lili;Yuan, Saifei;Guo, Rong;Shen, Biao;Shen, Qirong
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권10호
    • /
    • pp.1755-1764
    • /
    • 2016
  • The application of Bacillus sp. in the biological control of plant soilborne diseases has been shown to be an environmentally friendly alternative to the use of chemical fungicides. In this study, the effects of bioorganic fertilizer (BOF) fortified with Bacillus amyloliquefaciens SQY 162 on the suppression of tomato bacterial wilt were investigated in pot experiments. The disease incidence of tomato wilt after the application of BOF was 65.18% and 41.62% lower at 10 and 20 days after transplantation, respectively, than in the control condition. BOF also promoted the plant growth. The SQY 162 populations efficiently colonized the tomato rhizosphere, which directly suppressed the number of Ralstonia solanacearum in the tomato rhizosphere soil. In the presence of BOF, the activities of defense-related enzymes in tomato were lower than in the presence of the control treatment, but the expression levels of the defense-related genes of the plants in the salicylic acid and jasmonic acid pathways were enhanced. It was also found that strain SQY 162 could secrete antibiotic surfactin, but not volatile organic compounds, to suppress Ralstonia. The strain could also produce plant growth promotion compounds such as siderophores and indole-3-acetic acid. Thus, owing to its innate multiple-functional traits and its broad biocontrol activities, we found that this antagonistic strain isolated from the tobacco rhizosphere could establish itself successfully in the tomato rhizosphere to control soilborne diseases.

Enhancement of Drought-Stress Tolerance of Brassica oleracea var. italica L. by Newly Isolated Variovorax sp. YNA59

  • Kim, Yu-Na;Khan, Muhammad Aaqil;Kang, Sang-Mo;Hamayun, Muhammad;Lee, In-Jung
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권10호
    • /
    • pp.1500-1509
    • /
    • 2020
  • Drought is a major abiotic factor and has drastically reduced crop yield globally, thus damaging the agricultural industry. Drought stress decreases crop productivity by negatively affecting crop morphological, physiological, and biochemical factors. The use of drought tolerant bacteria improves agricultural productivity by counteracting the negative effects of drought stress on crops. In this study, we isolated bacteria from the rhizosphere of broccoli field located in Daehaw-myeon, Republic of Korea. Sixty bacterial isolates were screened for their growth-promoting capacity, in vitro abscisic acid (ABA), and sugar production activities. Among these, bacterial isolates YNA59 was selected based on their plant growth-promoting bacteria traits, ABA, and sugar production activities. Isolate YNA59 highly tolerated oxidative stress, including hydrogen peroxide (H2O2) and produces superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) activities in the culture broth. YNA59 treatment on broccoli significantly enhanced plant growth attributes, chlorophyll content, and moisture content under drought stress conditions. Under drought stress, the endogenous levels of ABA, jasmonic acid (JA), and salicylic acid (SA) increased; however, inoculation of YNA59 markedly reduced ABA (877 ± 22 ng/g) and JA (169.36 ± 20.74 ng/g) content, while it enhanced SA levels (176.55 ± 9.58 ng/g). Antioxidant analysis showed that the bacterial isolate YNA59 inoculated into broccoli plants contained significantly higher levels of SOD, CAT, and APX, with a decrease in GPX levels. The bacterial isolate YNA59 was therefore identified as Variovorax sp. YNA59. Our current findings suggest that newly isolated drought tolerant rhizospheric Variovorax sp. YNA59 is a useful stress-evading rhizobacterium that improved drought-stress tolerance of broccoli and could be used as a bio-fertilizer under drought conditions.

Alteration of plant hormones in transgenic rice (Oryza sativa L.) by overexpression of anti-apoptosis genes during salinity stress

  • Ubaidillah, Mohammad;Safitri, Fika Ayu;Lee, Sangkyu;Park, Gyu-Hwan;Kim, Kyung-Min
    • Journal of Plant Biotechnology
    • /
    • 제42권3호
    • /
    • pp.168-179
    • /
    • 2015
  • We previously identified the rice gene, OsSAP, as an encoder of a highly conserved putative senescence-associated protein that was shown to have anti-apoptotic activity. To confirm the role of OsSAP in inducing abiotic stress tolerance in rice, we introduced OsSAP and AtBI-1, a plant homologue of Bax inhibitor-1, under the control of the CaMV 35S promoter into the rice genome through Agrobacterium-mediated transformation. The OsSAP transformants showed a similar chlorophyll index after salinity treatments with AtBI-1. Furthermore, we compared the effects of salinity stress on leaves and roots by examining the hormone levels of abscisic acid (ABA), jasmonic acid (JA), gibberellic acid (GA3), and zeatin in transformants compared to the control. With the exception of phytohormones, stress-induced changes in hormone levels putatively related to stress tolerance have not been investigated previously. Hormonal level analysis confirmed the lower rate of stress in the transformants compared to the control. The levels of ABA and JA in OsSAP and AtBI-1 transformants were similar, where stress rates increased after one week and decreased after a two week period of drought; there was a slightly higher accumulation compared to the control. However, a similar trend was not observed for the level of zeatin, as the decrease in the level of zeatin accumulation differed in both OsSAP and AtBI-1 transformants for all genotypes during the early period of salinity stress. The GA3 level was detected under normal conditions, but not under salinity stress.

Xanthomonas oryzae pv. oryzae triggers complex transcriptomic defense network in rice

  • Nino, Marjohn;Nogoy, Franz M.;Song, Jae-Young;Kang, Kwon-Kyoo;Cho, Yong-Gu
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.164-164
    • /
    • 2017
  • High throughput transcriptome investigations of immunity in plants highlight the complexity of gene networks leading to incompatible interaction. To identify genes crucial to resistance against Xanthomonas oryzae pv oryzae, functional genetic analysis of selected differentially expressed genes from our microarray data set was carried out. A total of 13 overexpression vector constructs were made using 35S CaMV promoter which drive constitutive expression in rice. Most of the genes are developmentally expressed especially during maximum tillering stage and are commonly highly expressed in the leaves. When screened against Xoo strain K2, the transgenic plants displayed shorter lesion length compared with wild type Dongjin which indicates partial resistance. The levels of ROS continuously magnified after inoculation which indicates robust cellular sensing necessary to initiate cell death. Elevated transcripts levels of several defense-related genes at the downstream of defense signal network also corroborate the phenotype reaction of the transgenic plants. Moreover, expression assays revealed regulation of these genes by cross-communicating signal-transductions pathways mediated by salicylic and jasmonic acid. These collective findings revealed the key immune signaling conduits critical to mount full defense against Xoo.

  • PDF

AP2/EREBP Transcription Factors in Rice

  • Kim, Yun-Ju;Jung, Eui-Whan;Hwang, Seon-Hee;Go, Seong-Joo;Hwang, Duk-Ju
    • The Plant Pathology Journal
    • /
    • 제20권1호
    • /
    • pp.41-45
    • /
    • 2004
  • Plants have the ability to defend themselves against pathogens by activating a series of defense responses. SA is known to be a signal molecule in plant defense responses. Nevertheles, SA is not the only one signal mediating defense responses. In addition to SA, ethylene and jasmonic acid have also been known to mediate plant defense responses against pathogens. The activation of a series of plant defense responses is known to be through varieties of transcription factors. Specially AP2/EREBP transcription factors are involved in ethylene mediated defense signaling. In this review, recent progress on AP2/EREBP transcription factors in arabidopsis, tomato and tobacco and a few of AP2/ EREBP transcription factors in rice related to biotic stresses will be discussed.

현사시나무 Gibberellic Acid-Stimulated Arabidopsis (GASA) 유전자의 발현 특성 및 건조 스트레스 내성 구명 (Characterization of Gibberellic Acid-Stimulated Arabidopsis (GASA) gene to drought stress response in Poplar (Populus alba × P. glandulosa))

  • 최현모;배은경;최영임;윤서경;이효신
    • Journal of Plant Biotechnology
    • /
    • 제44권1호
    • /
    • pp.61-68
    • /
    • 2017
  • GASA는 GA에 의해 조절되는 식물 유전자로서, 여러 식물에 보존되어 있고 다양한 조직에서 식물의 생장과 발달 및 스트레스 반응에 관여하는 것으로 알려져 있다. 본 연구에서는 GASA 유전자를 현사시나무(Populus alba ${\times}$ P. glandulosa)에서 분리하여 이를 PagGASA라 명명하고, 유전자의 구조와 발현특성을 조사하였다. PagGASA 유전자는 95개의 아미노산으로 구성된 단백질을 암호화하며, 아미노 말단에 시그널 펩티드 영역과 카르복시 말단에 12개 시스테인 잔기가 보존되어 있다. PagGASA는 현사시나무의 염색체에 1 ~ 2 copy 존재하며, 꽃과 뿌리에서 높게 발현하였다. 또한 PagGASA는 GA 뿐 아니라 ABA와 JA, SA와 같은 스트레스 관련 식물 호르몬의 처리에 의해서 발현이 증가하는 것으로 나타났다. 현사시나무에 형질전환하여 PagGASA를 과발현시킨 결과 건조 내성에 효과가 있음을 확인하였다. 따라서 PagGASA는 스트레스 관련 식물 호르몬 신호전달과 연결되어 건조 스트레스 방어기작에서 중요한 역할을 할 것으로 생각된다.

현사시나무에서 Auxin/indole-3-acetic acid 1 (Aux/IAA1) 유전자 분리 및 발현 특성 구명 (Isolation and characterization of Auxin/indole-3-acetic acid 1 (Aux/IAA1) gene from poplar (Populus alba × P. glandulosa))

  • 배은경;최영임;이효신;최지원
    • Journal of Plant Biotechnology
    • /
    • 제46권3호
    • /
    • pp.180-188
    • /
    • 2019
  • 옥신은 식물의 생장과 발달 과정에서 중요한 조절자로서 기능한다. 옥신 신호전달 과정은 3개의 주요 옥신 반응 전사인자인 Auxin/indole-3-acetic acid (Aux/IAA), Gretchen Hagen 3 (GH3), 그리고 small auxin up RNA (SAUR) 유전자에 의해 조절된다. 특히, Aux/IAA는 옥신 신호에 반응하여 빠르게 축적되는 수명이 짧은 핵 단백질이다. 이 실험에서 우리는 현사시 나무(Populus alba ${\times}$ P. glandulosa)로 부터 PagAux/IAA1 유전자를 분리하고 발현 특성을 분석하였다. PagAux/IAA1 cDNA는 4개의 보존된 도메인과 2개의 nuclear localization sequence (NLS)을 포함한 200개의 아미노산을 암호화하고 있다. Southern blot 분석으로 현사시나무 genome에 PagAux/IAA1 유전자가 single copy로 존재하는 것을 확인하였다. PagAux/IAA1 유전자는 잎과 꽃에서 특이적으로 발현되었다. 그리고 PagAux/IAA1 유전자는 현탁배양세포의 생장 과정에서 초기 지수생장기에 발현되었다. PagAux/IAA1 유전자의 발현을 분석한 결과, 건조와 염 스트레스 및 식물호르몬인 ABA 처리에 의해 발현이 감소된 반면 저온 스트레스, 형성층의 세포 분열 과정 그리고 식물호르몬인 GA와 JA 처리에서 발현이 증가하였다. 따라서 PagAux/IAA1 유전자가 현사시나무에서 저온 스트레스 반응뿐 아니라 생장 과정에 관여할 것으로 판단된다.