Browse > Article

Identification of Putative MAPK Kinases in Oryza minuta and O. sativa Responsive to Biotic Stresses  

You, Min Kyoung (School of Life Sciences and Biotechnology, Korea University)
Oh, Seung-Ick (School of Life Sciences and Biotechnology, Korea University)
Ok, Sung Han (School of Life Sciences and Biotechnology, Korea University)
Cho, Sung Ki (Division of Biological Sciences, University of Missouri)
Shin, Hyun Young (School of Life Sciences and Biotechnology, Korea University)
Jeung, Ji Ung (National Crop Experiment Station, Rural Development Administration)
Shin, Jeong Sheop (School of Life Sciences and Biotechnology, Korea University)
Abstract
The mitogen-activated protein kinase (MAPK) signaling cascade is critical for regulating plant defense systems against various kinds of pathogen and environmental stresses. One component of this cascade, the MAP kinase kinases (MAPKK), has not yet been shown to be induced in plants following biotic attacks, such as those by insects and fungi. We describe here a gene coding for a blast (Magnaporthe grisea)- and insect (Nilaparvata lugens)-responsive putative MAPK kinase, OmMKK1 (Oryza minuta MAPKK 1), which was identified in a library of O. minuta expressed sequence tags (ESTs). Two copies of OmMKK1 are present in the O. minuta genome. They encode a predicted protein with molecular mass 39 kDa and pI of 6.2. Transcript patterns following imbibition of plant hormones such as methyl jasmonic acid (MeJA), ethephone, salicylic acid (SA) and abscisic acid (ABA), as well as exposure to methyl viologen (MV), revealed that the expression of OmMKK1 is related to defense response signaling pathways. A comparative analysis of OmMKK1 and its O. sativa ortholog OsMKK1 showed that both were induced by stress-related hormones and biotic stresses, but that the kinetics of their responses differed despite their high amino acid sequence identity (96%).
Keywords
Blast; Brown Planthopper; MAPK Signaling Cascade; Regulation of Gene Expression; Wild Rice;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 9  (Related Records In Web of Science)
연도 인용수 순위
1 Suntres, Z. E. (2002). Role of antioxidants in paraquat toxicity. Toxicology 180, 65−77
2 Thinlay, X., Finckh, M. R., Bordeos, A. C., and Zeigler, R. S. (2000) Effects and possible causes of an unprecedented rice blast epidemic on the traditional farming system of Bhutan. Agric. Ecosyst. Environ. 78, 237   DOI   ScienceOn
3 Thomma, B. P., Penninckx, I. A., Broekaert, W. F., and Cammue, B. P. (2001) The complexity of disease signaling in Arabidopsis. Curr. Opin. Immunol. 13, 63−68
4 Wen, J. Q., Oono, K., and Imai, R. (2002) Two novel mitogenactivated protein signaling components, OsMEK1 and Os- MAP1, are involved in a moderate low-temperature signaling pathway in rice. Plant Physiol. 129, 1880−1891
5 Frohman, M. A., Dush, M. K., and Martin, G. R. (1988) Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc. Natl. Acad. Sci. USA 85, 8998−9002
6 Nicot, N., Hausman, J. F., Hoffmann, L., and Evers, D. (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J. Exp. Bot. 56, 2907−2914
7 Moreno, A. B., Penas, G., Rufat, M., Bravo, J. M., Estopa, M., et al. (2005) Pathogen-induced production of the antifungal AFP protein from Aspergillus giganteus confers resistance to the blast fungus Magnaporthe grisea in transgenic rice. Mol. Plant-Microbe Interact. 18, 960−972
8 Cho, S. K., Ok, S. H., Jeung, J. U., Shim, K. S., Jung, K. W., et al. (2004) Comparative analysis of 5,211 leaf ESTs of wild rice (Oryza minuta). Plant Cell Rep. 22, 839−847
9 Kessler, A. and Baldwin, I.T. (2002) Plant responses to insect herbivory: the emerging molecular analysis. Annu. Rev. Plant. Biol. 53, 299−328
10 Ning, J., Yuan, B., Xie, K. B., Hu, H. H., Wu, C. Q., et al. (2006) Isolation and identification of SA and JA inducible protein kinase gene OsSJMK1 in rice. Yi Chuan Xue Bao. 33, 625− 633
11 Soyano, T., Nishihama, R., Morikiyo, K., Ishikawa, M., and Machida, Y. (2003) NQK1/NtMEK1 is a MAPKK that acts in the NPK1 MAPKKK-mediated MAPK cascade and is required for plant cytokinesis. Genes Dev. 17, 1055−1067
12 Takemoto, D., Hardham, A. R., and Jones, D. A. (2005) Differences in cell death induction by Phytophthora elicitins are determined by signal components downstream of MAP kinase kinase in different species of Nicotiana and cultivars of Brassica rapa and Raphanus sativus. Plant Physiol. 138, 1491−1504
13 Hadiarto, T., Nanmori, T., Matsuoka, D., Iwasaki, T., Sato, K., et al. (2006) Activation of Arabidopsis MAPK kinase kinase (AtMEKK1) and induction of AtMEKK1-AtMEK1 pathway by wounding. Planta 223, 708−713
14 Dai, Y., Wang, H., Li, B., Huang, J., Liu, X., et al. (2006) Increased expression of MAP KINASE KINASE7 causes deficiency in polar auxin transport and leads to plant architectural abnormality in Arabidopsis. Plant Cell 18, 308−320
15 Agrawal, G. K., Iwahashi, H., and Rakwal, R. (2003a) Rice MAPKs. Biochem. Biophys. Res. Commun. 302, 171−180
16 De Vos, M., Van Oosten, V. R., Van Poecke, R. M., Van Pelt, J. A., Pozo, M. J., et al. (2005) Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol. Plant-Microbe Interact. 18, 923−937
17 Levine, A., Tenhaken, R., Dixon, R., and Lamb, C. (1994) $H_2O_2$ from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79, 583−593
18 Backus, E. A., Serrano, M. S., and Ranger, C. M. (2005) Mechanisms of hopperburn: an overview of insect taxonomy, behavior, and physiology. Annu. Rev. Entomol. 50, 125−151
19 Lee, J., Rudd, J. J., Macioszek, V. K., and Scheel, D. (2004) Dynamic changes in the localization of MAPK cascade components controlling pathogenesis-related (PR) gene expression during innate immunity in parsley. J. Biol. Chem. 279, 22440−22448
20 Ryu, H. S., Han, M., Lee, S. K., Cho, J. I., Ryoo, N., et al. (2006) A comprehensive expression analysis of the WRKY gene superfamily in rice plants during defense response. Plant Cell Rep. 25, 836−847
21 Zhang, S. and Klessig, D. F. (2001) MAPK cascades in plant defense signaling. Trends Plant Sci. 6, 520−527   DOI   ScienceOn
22 Kim, S. M. and Sohn, J. K. (2005) Identification of a rice gene (Bph 1) conferring resistance to brown planthopper (Nilaparvata lugens Stal) using STS markers. Mol. Cells 20, 30−34
23 Brar, D. S. and Khush, G. S. (1997) Alien introgression in rice. Plant Mol. Biol. 35, 35−47
24 Glazebrook, J. (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43, 205−227
25 Vaughan, D. (1994) The wild relatives of rice-a genetic resources handbook. IRRI Philippines
26 Agrawal, G. K., Jwa, N. S., Shibato, J., Han, O., Iwahashi, H., et al. (2003b) Diverse environmental cues transiently regulate OsOPR1 of the 'octadecanoid pathway' revealing its importance in rice defense/stress and development. Biochem. Biophys. Res. Commun. 310, 1073−1082
27 Ichimura, K. (2002) Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci. 7, 301−308
28 Hamel, L. P., Nicole, M. C., Sritubtim, S., Morency, M. J., Ellis, M., et al. (2006) Ancient signals: comparative genomics of plant MAPK and MAPKK gene families. Trends Plant Sci. 11, 192−198
29 Melikant, B., Giuliani, C., Halbmayer-Watzina, S., Limmongkon, A., Heberle-Bors, E., et al. (2004) The Arabidopsis thaliana MEK AtMKK6 activates the MAP kinase AtMPK13. FEBS. Lett. 576, 5−8
30 Asai, T., Tena, G., Plotnikova, J., Willmann, M. R., Chiu, W. L., et al. (2002) MAP kinase signaling cascade in Arabidopsis innate immunity. Nature 415, 977−983
31 Teige, M., Scheikl, E., Eulgem, T., Doczi, R., Ichimura, K., et al. (2004) The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol. Cells 15, 141−152
32 Lamb, C. and Dixon, R. A. (1997) The Oxidative Burst in Plant Disease Resistance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 251−275
33 Chomczynski, P. (1992) One-hour downward alkaline capillary transfer for blotting of DNA and RNA. Anal. Biochem. 201, 134−139