• Title/Summary/Keyword: Jasmonic acid

Search Result 114, Processing Time 0.026 seconds

Expression of Antioxidant Isoenzyme Genes in Rice under Salt Stress and Effects of Jasmonic Acid and ${\gamma}$-Radiation

  • Kim, Jin-Hong;Chung, Byung-Yeoup;Baek, Myung-Hwa;Wi, Seung-Gon;Yang, Dae-Hwa;Lee, Myung-Chul;Kim, Jae-Sung
    • Journal of Applied Biological Chemistry
    • /
    • v.48 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • Analysis of chlorophyll (Chl) fluorescence implicated treatment of 40 mM NaCl decreased maximal photochemical efficiency of photosystem II (PSII) (Fv/Fm), actual quantum yield of PSII (${\Phi}_{PSII}$), and photochemical quenching (qP) in rice, but increased non-photochemical quenching (NPQ). Decreases in Fv/Fm, ${\Phi}_{PSII}$, and qP were significantly alleviated by $30\;{\mu}M$ jasmonic acid (JA), while NPQ increase was enhanced. Transcription levels of antioxidant isoenzyme genes were differentially modulated by NaCl treatment. Expression of cCuZn-SOD2 gene increased, while those of cAPXb, CATb, and CATc genes decreased. JA prevented salt-induced decrease of pCuZn-SOD gene expression, but caused greater decrease in mRNA levels of cAPXa and Chl_tAPX genes. Investigation of vacuolar $Na^+/H^+$ exchanger (NHX2) and 1-pyrroline-5-carboxylate synthetase (P5CS) gene expressions revealed transcription level of NHX2 gene was increased by JA, regardless of NaCl presence, while that of P5CS gene slightly increased only in co-presence of JA and NaCl. Unlike JA, ${\gamma}$-radiation rarely affected expressions of antioxidant isoenzyme, NHX2, and P5CS genes, except for increase in mRNA level of Chl_tAPX and decrease in that of pCuZn-SOD. These results demonstrate enhanced salt-tolerance in JA-treated rice seedlings may be partly due to high transcription levels of pCuZn-SOD, NHX2, and P5CS genes under salt stress.

Characteristics of Batch Cultures and Effects of Various Elicitors on Ginsenoside Production in Suspension Cultures of Panax Ginseng C.A. Meyer (고려인삼세포 현탁배양에서 회분배양 특성 및 Ginsenoside 생산에 대한 다양한 elicitors의 영향)

  • 유병삼;변상요
    • KSBB Journal
    • /
    • v.16 no.6
    • /
    • pp.620-625
    • /
    • 2001
  • This study was examined to investigate the time course behaviors of cell growth and sucrose consumption, and effects of various elicitors on ginsenoside production in batch suspension cultures of Panax ginseng Meyer. Suspended cells reached to the stationary phase at 12 days after innoculation. The maximum cell concentration was 14.7 g-DCW/L at 17 days. The highest cell growth rate was 0.59 g-DCW/L d. The sucrose used as a sole carbon source was hydrolysed to glucose and fructose in 4 days, then quickly utilized until the middle-log phase and consumpted completely at 16 days. Various elicitors were app1ied at 8 days from inoculation which is the middle-log phase. Among the elicitors tested, jasmonic acid was the most efficient to increase the ginseneside production, which was 1.5 times higher than control.

  • PDF

Elicitation of Seedlings and Cultured Cells for the Production of Capsidiol in Capsicum annum L. (고추 (Capsicum annum L.)식물체 및 배양세포의 Capsidiol 생산 유도)

  • 권순태;정은아;박해영;손건호
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.5
    • /
    • pp.249-254
    • /
    • 2001
  • Effects of ultraviolet stress and elicitors, cellulase and jasmonic acid (JA), for the production of capsidiol, sesquiterpenoid phytoalexin, in seedlings and suspension cultures of pepper (Capsicum annum L. cv, Soobicho) were examined. Extracellular capsidiol in the medium of suspension cultures was absent from control cells, but accumulated in the elicitor treated cells with 0.05 $\mu\textrm{g}$/mL of cellulase or 0.1 $\mu\textrm{g}$/mL JA. Elicited cells gradually decreased their viability and eventually died within 48 hours of elicitor treatment by the toxicity of capsidiol accumulated in the culture medium. Capsidiol production in the leaves of pepper seedlings was markedly increased by the treatment of ultraviolet stress and reached maximum level at 48 hours of irradiation. Infiltration of elicitors, 0.05 $\mu\textrm{g}$/mL cellulase or 1.0 $\mu\textrm{g}$/mL JA, to the surface of leaf or fruit, stimulated the elicitation of the cells which resulted in the production of capsidiol and expansion of pathogene-like lesion around the elicitor treated region.

  • PDF

Characterization of Cell Growth and Camptothecin Production in Cell Cultures of Camptotheca acuminata

  • Song, Seung-Hoon;Byun, Sang-Yo
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.6
    • /
    • pp.631-638
    • /
    • 1998
  • Studies were made to elucidate the cell growth and the production of camptothecin and its derivatives in cell cultures of Camptotheca acuminata. High resolution HPLC chromatograms to analyze camptothecin and 10-hydroxycamptothecin in lactone and carboxylate forms were obtained with a fluorescence detector. Calli inductions were optimized with the young stem of explant on Schenk and Hildebrandt (SH) medium supplemented with 5 mg/l $\alpha$-naphthaleneacetic acid (NAA), 0.2 mg/l 6-benzylamino purine (BAP), 2.0% sucrose, and 0.5% agar. The hybrid medium, a mixture of SH and Murashige and Skoog (MS) salts, was developed for homogeneous suspension cultures without large cell aggregates. The optimum phytohormone concentrations for successful suspension cultures were 1.0mg/l of 2,4-D and 0.5 mg/l of kinetin. The highest growth in suspension cultures was observed when 49.7% (w/w) of the cells was composed of small aggregates which were below 0.1 mm in diameter. Time course changes of cell growth and camptothecin production showed that camptothecin accumulation was started at the end of the growth phase and the maximum content was obtained 10 days after inoculation. Yeast extract elicitor increased camptothecin accumulation 4 times. Methyl jasmonate and jasmonic acid also increased camptothecin production 6 and 11 times, respectively.

  • PDF

Changes in Gibberellin, Abscisic Acid, Jasmonic Acid and Sugar Contents during Bulb Development and Secondary Growth Period in the Southern Type of Garlic (Allium sativum L.) (난지형 마늘의 인경 발육 및 이차생장 과정 중 Gibberellin, Abscisic Acid, Jasmonic Acid 및 당 함량 변화)

  • Sohn, Eun-Young;Kim, Yoon-Ha;Jang, Soo-Won;Kim, Jung-Tae;Lee, Hyun-Suk;Seo, Dong-Hwan;Lee, In-Jung
    • Horticultural Science & Technology
    • /
    • v.29 no.4
    • /
    • pp.279-287
    • /
    • 2011
  • This research surveyed the effect of endogenous gibberellins (GA), abscisic acid (ABA), jasmonic acid (JA) and sugar contents on bulb development and secondary growth in the southern type of garlic (Allium sativum L.) cv. Sangdongmaneul and cv. Namdomaneul of Korea. Sangdongmaneul and Namdomaneul showed endogenouse GA, ABA, JA and sugar contents were significantly different in patterns with different cultivar. GA and JA contents of southern type of garlic reached maximum before bulb differentiation and then their contents were decreased. On the other hand, ABA contents gradually increased from bulbing (leaf sheath: 6.58-18.59 $ng{\cdot}g^{-1}$ DW) start. GA contents in Sangdongmaneul and Namdomaneul were not significantly different from each other. These results revealed that GA contents were not affected by secondary growth of garlic. While JA contents (33.0-76.16 $ng{\cdot}g^{-1}$ DW) of Namdomaneul were higher than Sandongmaneul so our results suggest that JA suppressed development of secondary growth of garlic. Total sugar contents of Sandongmaneul and Namdomaneul were not significantly different but total sugar contents were gradually increased after bulb differentiation in Sandongmaneul and Namdomaneul.