• 제목/요약/키워드: Japanese larch wood

검색결과 88건 처리시간 0.021초

노스바 압축도가 삼나무, 편백, 일본잎갈나무 로타리단판의 이활 및 인장강도에 미치는 영향 (Effect of Nose Bar Pressure on Knife Check and Tensile Strength of Veneer from the Log of Japanese Larch (Larix leptolepis Gordon), Cryptomeria(Cryptomeria japonica D. Don.), and Japanese Cypress (Chamaecyparis obtusa Endl.))

  • 현정인
    • Journal of the Korean Wood Science and Technology
    • /
    • 제8권2호
    • /
    • pp.6-8
    • /
    • 1980
  • 일본 잎갈나무, 삼나무, 편백의 로타리단판 절삭 적정 노스바압축도를 얻기 위해서 노스바압축도 5%, 10% 15%의 조건으로 절삭된 단판의 이활, 인장 강도를 시험하여 다음과 같은 결론을 얻었다. 1. 일본잎갈나무 2mm단판의 적정 노스바압축도는 15%이었고, 2. 삼나무 2mm 단판의 적정 노스바압축도는 5%이었으며, 3. 편백 2mm 단판의 적정 노스바압축도는 15%이었다.

  • PDF

잎갈나무와 일본잎갈나무의 해부학적, 물리·역학적 특성 비교 (Comparison of Cellular Anatomical, Physical and Mechanical Properties Between Dahurian Larch and Japanese Larch)

  • 한연중;김민지;이현미;강진택;엄창득
    • Journal of the Korean Wood Science and Technology
    • /
    • 제45권5호
    • /
    • pp.525-534
    • /
    • 2017
  • 잎갈나무와 일본잎갈나무의 종 구분을 위하여 해부학적 특성을 관찰하고, 재질의 특성을 밝히기 위하여 연륜폭, 가도관 길이, 밀도, 강도 등을 비교분석하였다. 수간해석와 시험편 채취를 위하여 강원도 정선군 정선읍 지역에서 생장한 잎갈나무와 일본잎갈나무를 경급별(대 중 소)로 1본씩 선발하여 벌채하였다. 잎갈나무와 일본잎갈나무의 평균 수령은 각각 74년, 51년, 평균 흉고지름은 각각 442 mm, 352 mm, 평균 수고는 각각 26.1 m, 20.8 m이었다. 두 수종의 수목해부학적 차이는 나선비후가 잎갈나무에 존재하지 않지만, 일본잎갈나무의 방사가도관에 드물게 존재한다는 점이다. 하지만 본 연구에서는 잎본잎갈나무의 방사단면에서 나선비후가 발견되지 않았다. 수고 1.2 m의 원판에서 측정된 잎갈나무와 일본잎갈나무의 연평균 직경생장은 각각 5.167 mm, 5.954 mm로 일본잎갈나무의 생장이 잎갈나무에 비하여 우수하였다. 강도측정을 위한 시험편의 물리적 특성에서 연평균 직경생장이 작은 잎갈나무가 일본잎갈나무에 비하여 만재율과 전건밀도가 크게 측정되었다. 역학적 특성은 잎갈나무가 일본잎갈나무에 비하여 2 - 7% 크게 측정되었다. 본 연구를 통하여 축적된 자료는 향후 수행될 DNA 분석을 통한 잎갈나무와 일본잎갈나무 종 구분의 기초자료로 활용될 것으로 기대된다.

낙엽송(落葉松) 추출성분(抽出成分) 이용(利用)에 관(關)한 기초연구(基礎硏究) (Studies on the Characteristics of Extractives in Japanese Larch (Larix leptolepis Gordon) Grown in Korea)

  • 조남석;이종윤;안원영
    • Journal of the Korean Wood Science and Technology
    • /
    • 제10권2호
    • /
    • pp.12-21
    • /
    • 1982
  • Red pine and Japanese larch (Larix leptolepis Gordon) grown in Korea have been the main species of coniferous resources in Korea. Especially, planting area of Japanese larch has been increased continueously in the recent years due to its superior plant type and rapid growth rate and its stocks reached approximately 4.32 million cubic meters at the present time. Although many research works have been done for the utilization of the larch wood in various ways, still many problems are existed in its chemical applications due to a large proportion of soluble extractives. In this study, chemical composition of larch extractives and chemical structure of its major component were analyzed. In order to identify the basic structure of major component, gas-liquid chromatography for separation of some completely methylated alditols as their acetates on a 3% - ECNSS-M on Gas Chrom Q. column was used. Proportion of extractives of Japanese larch wood was higher than that of other conifers and major component of the soluble extractives was arabinogalactan, a schematic structural formula which was presented in Figure 2. The molar ratio of arabinose and galactose was 1:4.5. The main chain of arabinogalactan was composed of 1,3 linked ${\beta}$-D-galactopyranose residues, each of which carried a side chain, attached to the C-6 positions. The exact nature of all of the side chains is not known, but the majority of these side chain was composed of 1, 6 linked ${\beta}$-D-galactopyranose residues, with 2~3 such units present per average chain. Some of the galactose units in the main chain had a residue of 3 - 0 - ${\beta}$-L-arabinopyranosyl-L-arabinofuranose. In addition, a few terminal residues of D-glucuronic acid also was confirmed, attached to C-6 position of the D-galactopyranose residue. It could concluded that the main structure of highly branched arabinogalactan from Japanese larch extractive was essentially the same as those of the other larch species.

  • PDF

낙엽송(落葉松) 심재(心材)의 CCA와 CCFZ 처리특성(處理特性) 및 자상처리(刺傷處理)에 의(依)한 CCA 처리도(處理度) 개선(改善) (Treatment Characteristics of Japanese Larch Heartwood with CCA or CCFZ and Improving its CCA Treatability by Incising Techniques)

  • 강승모;김규혁;백기현
    • Journal of the Korean Wood Science and Technology
    • /
    • 제23권4호
    • /
    • pp.60-66
    • /
    • 1995
  • The treatability of Japanese larch heartwood was assessed by pressure treatment of non-incised dimension material with CCA or CCFZ. The effectiveness of incising(conventional, high density, and needle incising) for improving CCA treatability on refractory Japanese larch heartwood was also investigated. Preservative retention and penetration were somewhat greater with CCFZ treatment, although those was generally poor in both preservatives. The retention gradients for both CCA and CCFZ-treated stock were essentially the same shape. Treatment of non-incised material with CCA acheived the recommended treatability for using treated wood at the regions of hazard class H2 in the Japanese Agricultural Standards. However, Japanese larch heartwood would require incising as a pretreatment for enhancing treatability, if CCA-treated larch is intended to be used at the regions of hazard class H3 and H4. As expected, incising resulted in a considerable improvement of preservative treatability, particularly penetration, and the effect of incising on the improvement of treatability was excellent at the sequence of needle incising, high density incising, and conventional incising. Among incising techniques investigated in this study, high density and needle incising enhanced CCA treatability beyond the point where it did meet a minimum requirements specified by the Japanese Agricultural Standards for using CCA-treated Japanese larch at the regions of hazard class H3 and even H4.

  • PDF

소나무, 낙엽송, 북양가문비나무 변재부에서 CCA와 CCFZ의 정착특성 (Fixation characteristics of CCA and CCFZ in Japanese Red Pine, Japanese Larch, and Ezo Spruce Sapwood)

  • 김규혁;김형준;김재진
    • Journal of the Korean Wood Science and Technology
    • /
    • 제29권1호
    • /
    • pp.52-59
    • /
    • 2001
  • 본 연구는 양생방법과 양생온도에 따른 소나무, 낙엽송, 북양가문비나무 변재부에서 CCA와 CCFZ의 정착특성을 조사하기 위하여 수행되었다. 방부제 유효성분의 정착 정도는 6가크롬의 3가크롬으로 환원율에 의해 결정하였으며, 연구결과를 토대로 수종, 방부제, 양생방법, 양생온도의 조합별 적정 양생기간을 예측하였다. 양생방법에 관계없이 양생온도가 높을수록 방부제 유효성분들의 정착이 크게 가속되었으며, 건조양생에 비하여 비건조양생시 정착이 빨리 진행되었다. 수종간의 양생속도는 양생방법과 방부제의 종류에 관계없이 전반적으로 소나무>낙엽송>북양가문비나무 순으로 빨랐고, 소나무를 대상으로 비교한 방부제간의 정착속도는 CCA 2호>CCA 3호>CCFZ의 순이었다. 양생방법에 관계없이 양생온도와 양생 소요기간간의 상관이 매우 우수하여 처리재 양생장소의 대기온도에 의해 수종과 방부제의 조합별 적정 양생기간을 거의 완벽하게 예측할 수 있었다.

  • PDF

일본잎갈나무와 현사시나무를 이용한 브리켓의 제조 (Briquetting from Japanese larch and Hyunsasi poplar)

  • 한규성;김연일;문경태
    • Journal of the Korean Wood Science and Technology
    • /
    • 제40권1호
    • /
    • pp.1-9
    • /
    • 2012
  • 바이오매스로부터의 고밀화연료는 북미와 유럽에서 신재생에너지로서 널리 이용되고 있다. 본 연구에서는 일본잎갈나무와 현사시나무를 피스톤 프레스를 이용하여 브리켓을 제조하였으며, 연료적 특성 및 고밀화 특성을 밝히고자 압력, 가압시간, 수종 및 목분 크기가 브리켓의 특성에 미치는 영향을 조사하였다. 상온에서 110~170 MPa의 압력을 가해 제조된 일본잎갈나무와 현사시나무 브리켓의 4주간 경과 후의 밀도는 0.66~0.94 g/$cm^3$이고, 적정 가압시간은 12초이며, 제조 압력이 증가하면 브리켓의 밀도는 직선적으로 증가하였다. 일본잎갈나무 브리켓이 현사시나무 브리켓보다 밀도가 컸으며, 목분의 크기가 클수록 브리켓의 밀도가 컸다.

Development of Ply-Lam Composed of Japanese Cypress Laminae and Korean Larch Plywood

  • FUJIMOTO, Yoshiyasu;TANAKA, Hiroshi;MORITA, Hideki;KANG, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • 제49권1호
    • /
    • pp.57-66
    • /
    • 2021
  • In recent years, the use of cross laminated timber (CLT) has been evolving. In addition, CLT manufactured with various species such as Japanese cedar has been developed to utilize the local resources in each country. However most factories in Japan produce CLT by bonding the laminae in width direction for orthogonal layers, where grain of element is perpendicular to the grain of outer layer, and this process is considered to be one of the factors that reduce productivity. A new wood based material (hereinafter referred to as Ply-lam) using wooden panel such as plywood for the orthogonal layer was developed in order to improve productivity in CLT manufacturing and improve quality. Japanese cypress lamina was used for the parallel layer, where grain of element is parallel to the grain of outer layer, of CLT and Korean larch plywood was used for the orthogonal layer, in order to effectively use Korean larch and expand the utilization of Japanese cypress. The cross-sectional construction of the Ply-lam was 5-layers 5-plies, and the dimensions were 1000 mm (width) × 150 mm (depth) × 4000 mm (length). As a performance evaluation of the manufactured Ply-lam, strength tests such as out-of-plane bending, in-plane bending, out-of-plane shearing and in-plane shearing tests were carried out. As the result of this study, Ply-lam composed of Japanese cypress lamina panels and Korean larch plywood showed very higher out-of-plane bending strength compared to the standard strength of CLT. And the result obtained in other tests seems to show a sufficiently high value.

Evaluation of Two Species of Soft Wood Decay Resistance for Heat-Treated Wood Using the Catalyst (H2SO4)

  • Won, Kyung-Rok;Hong, Nam-Euy;Jung, Su-Young;Kim, Byung-Ro;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • 제45권2호
    • /
    • pp.195-201
    • /
    • 2017
  • This study was conducted to evaluate the resistance of heat-treated wood using the catalyst to decay caused by fungi for sapwood and heartwood of two tree species, Korean red pine (Pinus densiflora) and Japanese larch (Larix kaempferi), respectively. Wood samples were immersed for 10 min in sulfuric acid (7.5%) and then heat-treated at $130^{\circ}C$ for 90 min. Fomitopsis palustris, a brown-rot fungus, was used to examine the decay resistance of Korean red pine and Japanese larch wood. Weight and density of wood from the all conditions increased after heat treatment using the catalyst. Weight loss after decay resistance test was also dropped with a heat treatment. The lowest weight loss indicated at heat-treated heartwood of Japanese larch. Heat treatment using the catalyst effectively increased the resistance of wood to decay caused by fungi.

Experimental Study of Bending and Bearing Strength of Parallel Strand Lumber (PSL) from Japanese Larch Veneer Strand

  • OH, Seichang
    • Journal of the Korean Wood Science and Technology
    • /
    • 제50권4호
    • /
    • pp.237-245
    • /
    • 2022
  • This study examined the structural performance of experimental parallel strand lumber (PSL) from a Larch veneer strand. The prototype of PSL from a Larch veneer strand was manufactured in the experimental laboratory and tested. The bending and dowel bearing strength were determined from the modulus of elasticity (MOE), modulus of rupture (MOR), and dowel bearing strength based on a 5% offset yield load. The test results indicated that the average MOR of PSL was higher than that of 2 × 4 dimension lumber, and the average MOE of PSL was lower than that of 2 × 4 dimension lumber. A linear relationship was observed between the MOR and MOE. The allowable bending stress of PSL was derived as specified in ASTM D2915 and compared with other research. The dowel bearing strength of PSL in parallel to the grain was approximately double that perpendicular to the grain of PSL. A comparison of several theoretical calculations based on each national code for the dowel bearing strength was conducted, and some theoretical equations produced results closer to the experimental results when it was parallel to the grain, but the difference was higher in the case perpendicular to the grain. The test results showed that PSL made with Japanese larch veneer strands appeared to be suitable for a raw material of structural composite lumber (SCL) appeared to be used as a raw material for SCL.

Estimation of Depth Effect on the Bending Strength of Domestic Japanese Larch Structural Lumber using Weibull Weakest Link Theory

  • Oh, Sei Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • 제42권2호
    • /
    • pp.112-118
    • /
    • 2014
  • The depth effect on bending strength of Japanese larch structural lumber was investigated by using the published data of two different depth lumbers with the same length. Depth effect parameters were derived from Weibull's weakest link theory and compared to the results from other researches. Depth effect on bending strength was significant for No.1 and No.3 lumber, but not insignificant for No.2 lumber. Calculated value of the depth effect adjustment factors was 0.21, 0.11 and 0.22 by lumber grade, respectively. These results were similar to those results from previous researches and supported depth effect on bending strength of lumber. An apparent depth adjustment factor has been proposed to 0.2 in the literatures. Based on this study, depth adjustment factor was considered to 0.2 as a conservative optimum design value that should be incorporated in domestic building code (KBC) for structural lumber.