• Title/Summary/Keyword: James

Search Result 1,136, Processing Time 0.021 seconds

Industry 4.0 & Construction H&S: Comparative Perceptions

  • Beale, James;Smallwood, John
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.249-256
    • /
    • 2020
  • Historical construction health and safety (H&S) challenges, in terms of a range of resources and issues, continue to be experienced, namely design process-related hazards are encountered on site, workers are unaware of the hazards and risks related to the construction process and its activities, activities are commenced on site without adequate hazard identification and risk assessments (HIRAs), difficulty is experienced in terms of real time monitoring of construction-related activities, workers handle heavy materials, plant, and equipment, and ultimately the experience of injuries. Given the abovementioned, and the advent of Industry 4.0, a quantitative study, which entailed the completion of a self-administered questionnaire online, was conducted among registered professional (Pr) and candidate Construction H&S Agents, to determine the potential of Industry 4.0 to contribute to resolving the challenges cited. The findings indicate that Industry 4.0 technologies such as augmented reality (AR), drone technology, virtual reality (VR), VR based H&S training, and wearable technology /sensors have the potential to resolve the cited H&S challenges as experienced in construction. Conclusions include that Industry 4.0 technologies can finally address the persistent H&S challenges experienced in construction. Recommendations include: employer associations, professional associations, and statutory councils should raise the level of awareness relative to the potential implementation of Industry 4.0 relative to H&S in construction; case studies should be documented and shared; tertiary construction management education programmes should integrate Industry 4.0 into all possible modules, especially H&S-related modules, and continuing professional development (CPD) H&S should address Industry 4.0.

  • PDF

Posttraumatic bilateral thigh Morel-Lavallée lesions without an underlying bone fracture in the United Kingdom: a case report

  • Sarah Razaq;James Geffner;Asma Khan;Harry Mee;Cynthia Udensi;Fahim Anwar
    • Journal of Trauma and Injury
    • /
    • v.36 no.3
    • /
    • pp.269-275
    • /
    • 2023
  • A Morel-Lavallée lesion results from a degloving injury between the muscle fascia and the subcutaneous layer. It is most commonly found in the trochanteric area but can occur at other sites. The treatment of the condition varies according to the medical circumstances, as well as the size and chronicity of the condition. A case of large (18×6 and 10×5 cm) bilateral posttraumatic Morel-Lavallée lesions with no underlying bone fracture is presented; the case occurred in a 49-year-old male patient 4 weeks posttrauma. Ultrasound scans showed bilateral large collections of anechoic fluid, which were aspirated under ultrasound guidance and further managed by compression bandages. There were no further complications. The objective of this case report is to present this unique and educational case, as well as to provide an overview of the pathophysiology, diagnosis, and management of Morel-Lavallée lesions. We conclude by discussing the importance of having a high index of suspicion to ensure early detection and prompt treatment of such lesions to avoid complications.

Hydrophilic Interaction Liquid Chromatography (HILIC 분석법 개발을 위한 지능형 솔루션)

  • Matt James;Colin Pipe;Mark Fever;Jen Field;Seungho Chae
    • FOCUS: LIFE SCIENCE
    • /
    • no.1
    • /
    • pp.6.1-6.9
    • /
    • 2024
  • The document is a white paper on Hydrophilic Interaction Liquid Chromatography (HILIC) analysis method development. HILIC is a type of chromatography that uses an organic/aqueous mobile phase and a polar stationary phase. In HILIC, water is a strong solvent, and unlike in Reversed Phase Liquid Chromatography (RPLC), increasing the proportion of water in the mobile phase reduces the retention time of the analyte. The paper discusses when to consider HILIC analysis methods, the advantages of HILIC, and the challenges often encountered due to the lack of understanding of HILIC mechanisms compared to RPLC. It also provides a systematic flowchart for intelligent solutions for HILIC analysis method development, which includes a three-step approach for chromatography analysis method development. The first step involves gathering as much information as possible about the analyte (e.g., pKa, log P, log D). The second step involves analyzing the sample under different pH conditions using three HILIC columns in either isocratic or gradient mode to identify the suitable column/pH combination for the analyte. The third step involves optimizing the separation by investigating other parameters such as temperature and ionic strength, and assessing the robustness of the method. The paper emphasizes that the selection of the appropriate stationary/mobile phase combination, based on the differences between the HILIC stationary phases and the mobile phase pH, can provide high selectivity in the analysis. This step-by-step approach can help users develop an efficient analysis method.

  • PDF

Investigation of rate dependent shear bond properties of concrete masonry mortar joints under high-rate loading

  • John E. Hatfield;Genevieve L. Pezzola;John M. Hoemann;James S. Davidson
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.519-533
    • /
    • 2024
  • Many materials including cementitious concrete-type materials undergo material property changes during high-rate loading. There is a wealth of research regarding this phenomenon for concrete in compression and tension. However, there is minimal knowledge about how mortar material used in concrete masonry unit (CMU) construction behaves in high-rate shear loading. A series of experiments was conducted to examine the bond strength of mortar bonded to CMU units under high-rate shear loading. A novel experimental setup using a shock tube and dynamic ram were used to load specially constructed shear triplets in a double lap shear configuration with no pre-compression. The Finite Element Method was leveraged in conjunction with data from the experimental investigation to establish if the shear bond between concrete masonry units and mortar exhibits any rate dependency. An increase in shear bond strength was observed when loaded at a high strain rate. This data indicates that the CMU-mortar bond exhibits a rate dependent strength change and illustrates the need for further study of the CMU-mortar interface characteristics at high strain rates.

Full-scale simulation of wind-driven rain and a case study to determine the rain mitigation effect of shutters

  • Krishna Sai Vutukuru;James Erwin;Arindam Gan Chowdhury
    • Wind and Structures
    • /
    • v.38 no.3
    • /
    • pp.171-191
    • /
    • 2024
  • Wind Driven Rain (WDR) poses a significant threat to the building environment, especially in hurricane prone regions by causing interior and content damage during tropical storms and hurricanes. The damage due to rain intrusion depends on the total amount of water that enters the building; however, owing to the use of inadequate empirical methods, the amount of water intrusion is difficult to estimate accurately. Hence, the need to achieve full-scale testing capable of realistically simulating rain intrusion is widely recognized. This paper presents results of a full-scale experimental simulation at the NHERI Wall of Wind Experimental Facility (WOW EF) aimed at obtaining realistic rain characteristics as experienced by structures during tropical storms and hurricanes. A full-scale simulation of rain in strong winds would allow testing WDR intrusion through typical building components. A study of rain intrusion through a sliding glass door is presented, which accounted for the effects of multiple wind directions, test durations and wind speeds; configurations with and without shuttering systems were also considered. The study showed that significant levels of water intrusion can occur during conditions well below current design levels. The knowledge gained through this work may enhance risk modeling pertaining to loss estimates due to WDR intrusion in buildings, and it may help quantify the potential reduction of losses due to the additional protection from shuttering systems on sliding glass doors during winds.

SSC risk significance in risk-informed, performance-based licensing of non-LWRs

  • James C. Lin
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.819-823
    • /
    • 2024
  • The main criteria used in NEI 18-04 to define SSCs as risk-significant include (1) the SSC is required to keep all LBEs within the F-C target, and (2) the total frequency with the SSC failed exceeds 1% of the limit for at least one of the three cumulative risk metrics used for evaluating the integrated plant risk. The first one is a reasonable criterion in determining the risk significant SSCs. However, the second criterion may not be adequate to serve the purpose of determining the risk significance of SSCs. In the second criterion, the cumulative risk metric values representing the integrated plant risk (less the preventive and mitigative effects of the SSC being evaluated) are compared to a risk limit that represents a very small contribution to the overall integrated plant risk, which corresponds appropriately to the contributions from individual SSCs. The easiest approach to redefine the NEI 18-04 definition of risk-significant SSCs in relation to the integrated plant risk metrics is to compare the difference, between the risk metric value calculated with the SSC failed and the risk metric value calculated with the SSC credited, with 1% of the risk limit established for the integrated plant risk metrics.

Difference of Ginsenoside Contents in Roots Cultivated under Blue and Red Polyethylene Shading Net in Panax ginseng C. A. Meyer (청색과 적색 해가림 재배에 따른 인삼의 진세노사이드 함량 차이)

  • Lee, Sung-Woo;Kim, Geum-Soog;Park, Chung-Heon;Simon, James E.;Kim, Kwan-Su
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.spc
    • /
    • pp.103-107
    • /
    • 2008
  • This study was carried out to investigate the effect of light quality on root yield and ginsenoside contents of 4-year-old ginseng by using the fourfold polyethylene shading net with different colors, blue and red color, compared to blue-black (3:1) mixed shading net as control. Control and blue shading net occurred higher root yield, especially, in tap root growth than red one, whereas transmitted quantum in red shading net was higher than those in blue one or control. However, red shading net caused the highest content of total ginsenoside, especially, Rg1 content, as compared to blue and control. We assumed that the increased content of ginsenoside is not caused by light quality such as red, but is due to the increase of relative ratio of ginsenoside in whole root tissue arising from the reduced root growth.

Identification of a Promoter Motif Involved in Curtovirus Sense-Gene Expression in Transgenic Arabidopsis

  • Hur, Jingyung;Choi, Eunseok;Buckley, Kenneth J.;Lee, Sukchan;Davis, Keith R.
    • Molecules and Cells
    • /
    • v.26 no.2
    • /
    • pp.131-139
    • /
    • 2008
  • Expression of the seven open reading frames (ORFs) of single-stranded DNA Curtoviruses such as Beet curly top virus (BCTV) and Beet severe curly top virus (BSCTV) is driven by a bi-directional promoter. To investigate this bidirectional promoter activity with respect to viral late gene expression, transgenic Arabidopsis plants expressing a GUS reporter gene under the control of either the BCTV or BSCTV bi-directional promoter were constructed. Transgenic plants harboring constructs showed higher expression levels when the promoter of the less virulent BCTV was used than when the promoter of the more virulent BSCTV was used. In transgenic seedlings, the reporter gene constructs were expressed primarily in actively dividing tissues such as root tips and apical meristems. As the transgenic plants matured, reporter gene expression diminished but viral infection of mature transgenic plants restored reporter gene expression, particularly in transgenic plants containing BCTV virion-sense gene promoter constructs. A 30 base pair conserved late element (CLE) motif was identified that was present three times in tandem in the BCTV promoter and once in that of BSCTV. Progressive deletion of these repeats from the BCTV promoter resulted in decreased reporter gene expression, but BSCTV promoters in which one or two extra copies of this motif were inserted did not exhibit increased late gene promoter activity. These results demonstrate that Curtovirus late gene expression by virion-sense promoters depends on the developmental stage of the host plant as well as on the number of CLE motifs present in the promoter.

Effects of Transglutaminase on Pasting and Rheological Properties of Different Wheat Cultivars Blended with Barley or Soy Flour

  • Ahn, Hyun-Joo;Kim, Jae-Hyun;Chang, Yoon-Hyuk;Steffe, James F.;Ng, Perry K.W.;Park, Hee-Ra
    • Food Science and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.52-57
    • /
    • 2008
  • The effects of transglutaminase (TG) on the pasting and rheological properties of different wheat cultivars ('Sharpshooter', 'Russ', and 'AcAriss') blended with barley (40%) or soy (20%) flour were investigated. In the rapid visco-analyzer (RVA) pasting profile, the addition of barley or soy flour to wheat flour samples induced a decrease in peak, trough, final viscosity, breakdown and setback values. However, TG treatment of these blends significantly increased peak viscosity and breakdown (p<0.05). In particular, TG treatment greatly increased the breakdown of wheat flour blended with soy flour, indicating that the cross-linking of proteins through TG may somehow be related to an increase in starch granule rupturing in pastes. Storage (G') and loss (G") moduli of the sample pastes increased with an increase in frequency ($\omega$), while complex viscosity (${\eta}*$) decreased. In all wheat cultivars, G', G", and $\eta$ were decreased by the addition of barley or soy flour, or TG treatment. Results suggest that protein cross-linking by TG can produce unique and improved properties in wheat flours blended with barley or soy flour.

Homologue Patterns of Polychlorinated Naphthalenes (PCNs) formed via Chlorination in Thermal Process

  • Ryu, Jae-Yong;Kim, Do-Hyong;Mulholland, James A.;Jang, Seong-Ho;Choi, Chang-Yong;Kim, Jong-Bum
    • Journal of Environmental Science International
    • /
    • v.21 no.8
    • /
    • pp.891-899
    • /
    • 2012
  • The chlorination pattern of naphthalene vapor when passed through a 1 cm particle bed of 0.5% (mass) copper (II) chloride ($CuCl_2$) mixed with silicon dioxide ($SiO_2$) was studied. Gas streams consisting of 92% (molar) $N_2$, 8% $O_2$ and 0.1% naphthalene vapor were introduced to an isothermal flow reactor containing the $CuCl_2/SiO_2$ particle bed. Chlorination of naphthalene was studied from 100 to $400^{\circ}C$ at a gas velocity of 2.7 cm/s. Mono through hexachlorinated naphthalene congeners were observed at $250^{\circ}C$ whereas a broader distribution of polychlorinated naphthalenes (PCNs) including hepta and octachlorinated naphthalenes was observed at $300^{\circ}C$. PCN production was peak at $250^{\circ}C$ with 3.07% (molar) yield, and monochloronaphthalene (MCN) congeners were the major products at two different temperatures. In order to assess the effect of a residence time on naphthalene chlorination, an experiment was also conducted at $300^{\circ}C$ with a gas velocity of 0.32 cm/s. The degree of naphthalene chlorination increased as a gas velocity decreased.