• Title/Summary/Keyword: Jacobi-Bessel series

Search Result 4, Processing Time 0.019 seconds

Analysis of Radiation Characteristics of the Shaped Cassegrainian Antenna (수정곡면 카세그레인 안테나의 복사특성 해석)

  • Ryu, Hwang;Joo, Gi-Ho
    • The Journal of Engineering Research
    • /
    • v.3 no.1
    • /
    • pp.159-169
    • /
    • 1998
  • The purpose of this study is to analyze the radiation characteristics of the shaped Cassegrainian antenna. Radiation pattern of the sub-reflector is calculated by GTD (Geometrical Theory of Diffraction) The complete radiation patterns are obtained by summing the reflect field from the surface and the diffracted fields from the edge. The first and the second derivative on the sub-reflector are calculated by the local interpolation technique. The Radiation characteristics of the main-reflector are obtained by integrating the surface current density, which is derived from PO approximation. The radiation integral is expanded by the Jacobi-Bessel series for the purpose of reducing the computation time.

  • PDF

Analysis of Radiation Characteristics on Offset Gregorian Antenna Using Jacobi-Bessel Series (Jacobi-Bessel 급수를 이용한 옵셋 그레고리안 안테나의 복사특성 해석)

  • Ryu, Hwang
    • The Journal of Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.5-14
    • /
    • 1997
  • The purpose of thesis is to analyze the radiation characteristics of an offset gregorian antenna in order to design the satellite-loaded antenna. In order to compute the radiation pattern of the sub-reflector, the reflected wave is obtained by GO(Geometric Optics) at an arbitrary shaped sub-reflector. Then the total radiation EM wave is obtained by summing the diffracted fields obtained by UTD(Uniform Geometrical Theory of Diffraction) and the GO fields. In order to calculate the far field radiation pattern of the main reflector, the radiation integral equation is derived from the induced current density on reflector surface using PO(Physical Optics). The kernel is expanded in terms of Jacobi-Bessel series for increasing the computational efficiency, then the modified radiation integral is represented as the double integral equation independent of observation points. When the incident fields are assumed to be x-or y-polarized field, the characteristics of radiation patterns in the gregorian antenna is analyzed in case of the main reflector having the focal length of 62.4$\lambda$, diameter of 100$\lambda$, and offset height of 75$\lambda$, and the sub-reflector having the eccentricity of 0.501, the inter focal length og 32.8$\lambda$, the horn axis angle of $9^{\circ}$ and the half aperture angle of $15.89^{\circ}$. The cross-polarized level and side lobe level in the offset geogorian reflector are reduced by 30dB and 10dB, respectively, in comparison with those of the offset parabolic antenna.

  • PDF

AN EFFICIENT ALGORITHM FOR EVALUATION OF OSCILLATORY INTEGRALS HAVING CAUCHY AND JACOBI TYPE SINGULARITY KERNELS

  • KAYIJUKA, IDRISSA;EGE, SERIFE M.;KONURALP, ALI;TOPAL, FATMA S.
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.1_2
    • /
    • pp.267-281
    • /
    • 2022
  • Herein, an algorithm for efficient evaluation of oscillatory Fourier-integrals with Jacobi-Cauchy type singularities is suggested. This method is based on the use of the traditional Clenshaw-Curtis (CC) algorithms in which the given function is approximated by the truncated Chebyshev series, term by term, and the oscillatory factor is approximated by using Bessel function of the first kind. Subsequently, the modified moments are computed efficiently using the numerical steepest descent method or special functions. Furthermore, Algorithm and programming code in MATHEMATICA® 9.0 are provided for the implementation of the method for automatic computation on a computer. Finally, selected numerical examples are given in support of our theoretical analysis.

An Optimum Design of the Shaped Cassegrainian Antenna (수정 곡면 카세그레인 안테나의 최적 설계)

  • Ryu, Hwang;Kim, Ik-Sang
    • The Journal of Engineering Research
    • /
    • v.2 no.1
    • /
    • pp.113-123
    • /
    • 1997
  • The purpose of this paper is an optimum design of the shaped Cassegrainian antenna system for the base station. The process of the shaped Cassegrainian antenna design is as follows : 1) the aperture field distribution is determined so as to meet design specifications, 2) a proper design parameter is selected, 3) extracting of the dimension data for the main and sub-reflector antenna To do these, Hansen's distribution is chosen as the aperture field, and the far-field pattern from the aperture is predicted by the angular spectrum. Firstly, the aperture field distribution is designed to satisfy the specification for design frequency, it is confirmed if this distribution meet the specification for another frequency band. The main- and the sub-reflectors are synthesized so as for the given beamwaveguide feed pattern to be transformed into the prescribed aperture distribution. The designed system has circular aperture, left-right symmetry and no tilted structure. The continuous surface functions of reflectors are obtained by adopting the global interpolation technique to the discrete reflector profiles. Jacobi polynomial-sinusoidal is used as the basis function. A Ka-band Cassegrainian antenna operates over 17.7 – 20.2 GHz for down-link band and 27.5 – 30 GHz for up-link band is designed.

  • PDF