• Title/Summary/Keyword: Jacket structure

Search Result 141, Processing Time 0.028 seconds

Structural control of a steel jacket platform

  • Abdel-Rohman, Mohamed
    • Structural Engineering and Mechanics
    • /
    • v.4 no.2
    • /
    • pp.125-138
    • /
    • 1996
  • This paper deals with the application of certain active and passive control mechanisms to control the dynamic response of a steel jacket platform due to wave-induced forces. The forces are estimated using the nonlinear Morison equation which provides nonlinear self-excited hydrodynamic forces. The influence of these forces on the response of a structure without and with vibration control mechanisms is demonstrated using a steel jacket platform as a simple example.

Accuracy assessment of real-time hybrid testing for seismic control of an offshore wind turbine supporting structure with a TMD

  • Ging-Long Lin;Lyan-Ywan Lu;Kai-Ting Lei;Shih-Wei Yeh;Kuang-Yen Liu
    • Smart Structures and Systems
    • /
    • v.31 no.6
    • /
    • pp.601-619
    • /
    • 2023
  • In this study, the accuracy of a real-time hybrid test (RTHT) employed for a performance test of a tuned mass damper (TMD) on an offshore wind turbine (OWT) with a complicated jacket-type supporting structure is quantified and evaluated by comparing the RTHT results with the experimental data obtained from a shaking table test (STT), in which a 1/25-scale model for a typical 5-MW OWT controlled by a TMD was tested. In the RTHT, the jacket-type OWT structure was modelled using both multiple-DOF (MDOF) and single-DOF (SDOF) numerical models. When compared with the STT test data, the test results of the RTHT show that while the SDOF model, which requires less control computational time, is able to well predict the peak responses of the nacelle and TMD only, the MDOF model is able to effectively predict both the peak and over-all time-history responses at multiple critical locations of an OWT structure. This also indicates that, depending on the type of structural responses considered, an RTHT with either an SDOF or a MDOF model may be a promising alternative to the STT to assess the effectiveness of a TMD for seismic mitigation in an OWT context.

Analysis of Dynamic Response Characteristics for 5 MW Jacket-type Fixed Offshore Wind Turbine

  • Kim, Jaewook;Heo, Sanghwan;Koo, WeonCheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.347-359
    • /
    • 2021
  • This study aims to evaluate the dynamic responses of the jacket-type offshore wind turbine using FAST software (Fatigue, Aerodynamics, Structures, and Turbulence). A systematic series of simulation cases of a 5 MW jacket-type offshore wind turbine, including wind-only, wave-only, wind & wave load cases are conducted. The dynamic responses of the wind turbine structure are obtained, including the structure displacement, rotor speed, thrust force, nacelle acceleration, bending moment at the tower bottom, and shear force on the jacket leg. The calculated time-domain results are transformed to frequency domain results using FFT and the environmental load with more impact on each dynamic response is identified. It is confirmed that the dynamic displacements of the wind turbine are dominant in the wave frequency under the incident wave alone condition, and the rotor thrust, nacelle acceleration, and bending moment at the bottom of the tower exhibit high responses in the natural frequency band of the wind turbine. In the wind only condition, all responses except the vertical displacement of the wind turbine are dominant at three times the rotor rotation frequency (considering the number of blades) generated by the wind. In a combined external force with wind and waves, it was observed that the horizontal displacement is dominant by the wind load. Additionally, the bending moment on the tower base is highly affected by the wind. The shear force of the jacket leg is basically influenced by the wave loads, but it can be affected by both the wind and wave loads especially under the turbulent wind and irregular wave conditions.

Structural Design Optimization of Gageocho Jacket Structure Considering Unity Check (가거초 자켓 구조물의 허용응력비를 고려한 구조 최적설계)

  • Kim, Byungmo;Ha, Seung-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.4
    • /
    • pp.205-212
    • /
    • 2021
  • Offshore jacket structures generally comprise steel members, and the safety standard for jacket structures typically focuses on the steel components. However, large amounts of concrete grouting is filled in the legs of the Gageocho jacket structure to aid in the recovery from typhoon damage. This paper proposes a safe and lightweight design for the Gageocho ocean research station comprising steel members instead of large amounts of concrete reinforcement in the legs. Based on the actual design, the structural members are grouped according to their functional roles, and the inner diameter of the cross-section in each design group is defined as a design variable. Structural optimization is carried out using a genetic algorithm to minimize the total weight of the structure. To satisfy the conservative safety standards in the offshore field, both the maximum stress and the unity check criteria are considered as design constraints during optimization. For enhanced safety confidence, extreme environmental conditions are assumed. The maximum marine attachment thickness and the section erosion in the splash zone are applied. Additionally, the design load is defined as the force induced by extreme waves, winds, and currents aligned in the same direction. All the loading directions surrounding the structure are considered to design the structure in a balanced and safe manner. As a result, compared with the current structure, the proposed structure features a 45% lighter design, satisfying the strict offshore safety criteria.

Benchmark test of large scale offshore wind turbine with jacket foundation

  • Baek, Jaeha;Park, Hyunchul;Shi, Wei;Lee, Jusang;Lee, Jongsun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.37.2-37.2
    • /
    • 2011
  • Nowadays, offshore wind energy experiences a rapid development because of its wind condition and no noise impact problem. Different from Europe, offshore wind is just started in Asia. More work and research are needed in Korea. In this work, a three-bladed upwind variable speed pitch controlled 5MW wind turbine on a jacket support structure is used. During the simulation, several design load cases are investigated in two different fully coupled aero-hydro-servo-elastic codes. Some critical loads on the foundation are compared and analyzed.

  • PDF

A New Sparse Matrix Analysis of DFT Similar to Element Inverse Jacket Transform (엘레멘트 인버스 재킷 변환과 유사한 DFT의 새로운 희소 행렬 분해)

  • Lee, Kwang-Jae;Park, Dae-Chul;Lee, Moon-Ho;Choi, Seung-Je
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.4C
    • /
    • pp.440-446
    • /
    • 2007
  • This paper addresses a new representation of DFT matrix via the Jacket transform based on the element inverse processing. We simply represent the inverse of the DFT matrix following on the factorization way of the Jacket transform, and the results show that the inverse of DFT matrix is only simply related to its sparse matrix and the permutations. The decomposed DFT matrix via Jacket matrix has a strong geometric structure that exhibits a block modulating property. This means that the DFT matrix decomposed via the Jacket matrix can be interpreted as a block modulating process.

The Effect of Ornaments and Color of Jacket on Female Impression (장신구와 재킷 색이 여성의 인상에 미치는 영향)

  • 이명희;강승희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.22 no.8
    • /
    • pp.1111-1121
    • /
    • 1998
  • The objectives of this study were to identify the dimensional structure of female impression formation based on ornaments and color of jacket, and to analyze the effect of ornaments, color of jacket, and perceiver's gender on impression formation. The experimental design was 3$\times$4$\times$2(ornaments$\times$color of jacket$\times$gender) factorial design by 3 independent variables. The stimuli of color photographs of female model and the semantic differential scale were used. Samples were 288 college males and females. The data were analyzed by factor analysis, ANOVA, duncan's multiple range test, and t-test. Four factors derived to account for the dimensions of impression formation. These were potency, elegance, evaluation, youthfulness, and feminine. Wearing of large ornaments(a necklace and earrings) had a negative effect on impression of elegance and positive on potency. Red jackets increased the impression of positive evaluation, potency, feminity, and youthfulness. On the jackets of achromatic color such as white and black, wearing of large ornaments increased the effect of potency, and large ornaments increased matured impression on black jacket. The results of this study mean that perceiverss used large ornaments and red jackets as a salient cue.

  • PDF

Comparison between Field Test and Numerical Analysis for a Jacket Platform in Bohai Bay, China

  • Yang He-Zhen;Park Han-Il;Choi Kyung-Sik;Li Hua-Jun
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.2 s.69
    • /
    • pp.1-7
    • /
    • 2006
  • This paper, presents a comparison between numerical analysis and field test on a real offshore platform in Bohai Bay, China. This platform is a steel jacket offshore platform with vertical piles. The field testing under wave-induced force and wind force etc. was conducted, in order to obtain the dynamic parameters of the structure, including the frequencies of the jacket platform, as well as the corresponding damping ratios and mode shapes. The natural excitation technology (NexT) combined with eigensystem realization algorithm (ERA) and the peak picking (PP) method in frequency domain are carried out for modal parameter indentification under operational conditions. The three-dimeansional finite element model (FEM) is constructed by ANSYS and analytical modal analysis is performed to generate modal parameters. The analytical results were compared with experimental results. A good agreement was achieved between the finite element and analysis and field test results. It is further demonstrated that the numerical and experimental modal analysis provide a comprehensive study on the dynamic properties of the jacket platform. According to the analysis results, the modal parameters identification under ambient excitation can calibrate finite element model of the jacket platform structures, or can be used for the structural health monitoring system.

Development and Wearability Evaluation of All-Fabric Integrated Smart Jacket for a Temperature-regulating System Based on User Experience Design (사용자 경험 중심의 섬유일체형 온도조절 스마트재킷 개발과 착용성 평가)

  • Kim, Sareum;Roh, Jung-Sim;Lee, Eun Young
    • Fashion & Textile Research Journal
    • /
    • v.18 no.3
    • /
    • pp.363-373
    • /
    • 2016
  • This study aims to develop an all-fabric integrated smart jacket in order to create a temperature-regulating system based on a user experience design. For this research, previous research technologies of a textile switch interface and a temperature-regulating system were utilized and a unifying technology for the all-fabric integrated smart jacket was developed which can provide the appropriate temperature environments to the human body. A self-heating textile was applied at the areas of the back and hood in the final tested jacket, and an embroidery circuit was developed in the form of a rectangle in the back and in both ears of the hood, taking into account the pattern of the jacket part where it was be applied and the embroidery production method. The textile switch interface was designed in a three-layer structure: an embroidery circuit line in a conductive yarn, an interval material, and a conductive sensing material, and it was made to work with the input and output sensors through the multiple input method. After the all-fabric integrated smart jacket was produced according to the pattern, all of the textile band lines for transmission were gathered and connected with a miniature module for controlling temperature and then integrated into the inside of the left chest pocket of the jacket. After the users put on this jacket, they were asked to assess the wearing satisfaction. Most of them reported a very low level of irritation and discomfort and said that the jacket was as comfortable as everyday clothing.

The multidimensional subsampling of reverse jacket matrix of wighted hadamard transform for IMT2000 (IMT2000을 위한 하중 hadamard 변환의 다차원 reverse jacket 매트릭스의 서브샘플링)

  • 박주용;이문호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.11
    • /
    • pp.2512-2520
    • /
    • 1997
  • The classes of Reverse Jacket matrix [RJ]$_{N}$ and the corresponding Restclass Reverse Jacket matrix ([RRJ]$_{N}$) are defined;the main property of [RJ]$_{N}$ is that the inverse matrices of them can be obtained very easily and have a special structure. [RJ]$_{N}$ is derived from the weighted hadamard Transform corresponding to hadamard matrix [H]$_{N}$ and a basic symmertric matrix D. the classes of [RJ]$_{2}$ can be used as a generalize Quincunx subsampling matrix and serveral polygonal subsampling matrices. In this paper, we will present in particular the systematical block-wise extending-method for {RJ]$_{N}$. We have deduced a new orthorgonal matrix $M_{1}$.mem.[RRJ]$_{N}$ from a nonorthogonal matrix $M_{O}$.mem.[RJ]$_{N}$. These matrices can be used to develop efficient algorithms in IMT2000 signal processing, multidimensional subsampling, spectrum analyzers, and signal screamblers, as well as in speech and image signal processing.gnal processing.g.

  • PDF