• Title/Summary/Keyword: Jack mackerel fishery

Search Result 12, Processing Time 0.023 seconds

Fishing status of jack mackerel fishery in the southeastern Pacific Ocean (남동태평양의 전갱이트롤어업 현황)

  • Kim, Doo-Nam;Lee, Dong-Woo;Oh, Taeg-Yun;Choi, Young-Min
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.46 no.4
    • /
    • pp.430-440
    • /
    • 2010
  • To investigate the catches of jack mackerel fishery, a series of fishing experiments was conducted in the high seas of the southeastern Pacific Ocean ($30^{\circ}S-38^{\circ}S,\;82^{\circ}W-95^{\circ}W$) during the period of 9 August to 18 December, 2003 by commercial fishing vessel and research vessel. The number of 205 tows fishing was carried out in the southeastern Pacific Ocean. The total catch was 1,988 ton and CPUE was 2.4 ton/hour. CPUE showed high values in the frontal zone during the survey. Main target species caught from the experimental fishing were the jack mackerel, Trachurus murphyi (98.1%) and chub mackerel, Scomber japonicus (1.9%) as bycatch. Body length of the jack mackerel was different between female and male. The high mean catch per unit effort of jack mackerel was showed when the fishing ground of jack mackerel fishery was over the $110^{\circ}W$ in the southeastern Pacific Ocean. But the fluctuation of the catch per unit effort in the western part of fishing ground was not matched with those year. Reliable physical and oceanographical information will be useful for the efficiency of fishing activity. According to the result of monthly movement of center of fishing ground, the fishing activity of jack mackerel fishery was performed northward in the southeastern Pacific Ocean as time passes.

A study on fluctuation of the fishing grounds of target fishes by the Korean large purse seine fishery (대형선망어업의 주요 목표종의 어장 변동)

  • Lee, Jong-Hee;Lee, Jae-Bong;Zhang, Chang-Ik;Kang, Su-Kyung;Choi, Young-Min;Lee, Dong-Woo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.48 no.2
    • /
    • pp.107-117
    • /
    • 2012
  • Korean large purse seine fishery catches chub mackerel, sardine, jack mackerel, Spanish mackerel, etc. which are mainly pelagic fish species. The proportion of chub mackerel was 60% over in Korean large purse seine fishery. Sea surface temperature (SST) increased $0.0253^{\circ}C$ per year and total rising rate was $0.759^{\circ}C$ from 1980 to 2009 in the southern sea of Korea, where is mainly fishing grounds of Korean large purse seine. It was that p<0.01 level was statistically significant. It is northward movement that the center of fishing grounds of chub mackerel by Korean large purse seine fishery moved 4.57km/yr. It was rapidly northward movement about 7.1km/yr, 8.13km/yr to move Spanish mackerel and bluefin tuna fishing grounds. However, the fishing grounds of jack mackerel were moved further south in the 2000s than the 1980s. Catch of tunas and bluefin tuna consistently increased in Korean waters. There was a significantly positive correlation between SST and catch of bluefin tuna in the fishing grounds of Korean waters.

Age and Growth of Jack Mackerel Trachurus japonicus off Jeju Island, Korea (제주 인근해역에 서식하는 전갱이(Trachurus japonicus Temminck et Schlegel)의 연령과 성장)

  • Lee, Dong Jin;Kang, Sukyung;Jung, Kyung-Mi;Cha, Hyung Kee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.5
    • /
    • pp.648-656
    • /
    • 2016
  • The age and growth of jack mackerel Trachurus japonicus caught by large purse seine fishery were studied during August 2004 and May 2005. Otoliths of 472 fish were observed under reflected light, and translucent zones made on the post-rostrum axis were regarded as annual marks. Monthly changes in the marginal index indicated that the translucent zone was formed once a year, mainly in March-April, which was coincident with the peak spawning time of jack mackerel. The estimated ages were 0-6 years, corresponding to a fork length (FL) range of 13 to 38 cm. Most obtained individuals were 2-year-old fish, followed by 1-year-old fish. The mean fork length at age from otolith reading (sex combined) was applied to the von Bertalanffy equation and growth parameters were estimated: L = 38.29 cm FL, k = 0.31 years−1, t0 = −0.81 years.

A Status, problems and its solutions of the korean trawl fishery in New Zealand sea (뉴질랜드 해역에서의 한국 트롤어업의 현황, 문제점과 해결방안)

  • Jang, Choong-Sik;An, Young-Su
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.50 no.3
    • /
    • pp.361-367
    • /
    • 2014
  • The aims of this study are to access the status and problems and draft possible solutions of Korean trawl fishery in New Zealand sea. The main target fish species for Korean trawlers in this sea were barracouta, blue mackerel, hake, hoki, jack mackerel, ling, oreo, orange roughy, southern blue whiting, spiny dogfish, squid and silver warehou. The Korean trawl fishery are suffering from a supply of seaman, continuous increasing coast of the counter partner, repair of vessel and seaman supply. It may be useful for getting over these difficulties to build a new trawler with a automatic operation system.

A Study on the Optimal Production Using Discrete Time Bio-economic Model: A Case of the Large Purse Seine Fisheries in Korea (바이오경제모형을 이용한 최적 생산량 분석: 수산업을 중심으로)

  • Nam, Jong Oh;Choi, Jong Du;Cho, Jung Hee;Lee, Jung Sam
    • Environmental and Resource Economics Review
    • /
    • v.19 no.4
    • /
    • pp.771-804
    • /
    • 2010
  • This paper estimates optimal production of fish stock using discrete time bio-economic model to make zero profits or to maximize economic profits with maintaining sustainable resource levels under an open access and a sole owner. Particularly, this study generates optimal yields and efforts of large purse seine fisheries which catch mackerel and jack mackerel by using the logistic growth function, Cobb-Douglas production function, fisheries cost and profit functions. As a result, optimal yields of mackerel and jack mackerel under ecological equilibrium of a sole owner were approximately 172,512 tons and 16,937 tons respectively. Also, optimal fishing efforts of mackerel and jack mackerel under the same situation were about 8,508 hauls and 4,915 hauls respectively. In conclusion, the paper suggests that the large purse seine should reduce fishing efforts and increase fish stock to generate higher net present value in optimally managed fishery than that of the present large purse seine.

  • PDF

The Exploitation of World Fishery Resources for 10 Years under the New Regime in the Sea (신해양질서 10년후 세계어업자원 이용동향)

  • 이장욱;허영희
    • The Journal of Fisheries Business Administration
    • /
    • v.23 no.1
    • /
    • pp.43-87
    • /
    • 1992
  • In this paper, state of exploitation of world fishery resources after 10 years under the new regime in the sea, called the era of exclusive economic zone (EEZ) expending up to a 200 nautical miles from coastal line, was reviewed to determine effect from establishing EEZ in the world fishery production and its export/import volume based on the fishery statistics annually published by the Food and Agriculture Organization (FAO) of United Nation. The world total production from marine living resources had a trend showing a waned increase during 1970's when most of coastal states were translated into the reality of EEZ. From mid-1980's onwards, it increased rapidly, reaching about 85 million tons . Such increase in production was basically from the Pacific Ocean, accounting for more than 60% of the world total production. Fishing areas where showed increase in the production after the new regime in the sea were the southwestern Atlantic (FAO area 41) , the eastern Indian (FAO area 57) and the whole fishing areas in the Pacific except the eastern central Pacific (FAO area 77). Increase in the production from distant-water fishing countries came from the regions of the southwest Atlantic (FAO area 41) and the southwest Pacific (FAO area 81) . The production from coastal states was up from the regions of the eastern Indian (FAO area 57) , the northwest and northeast Pacific (FAO areas 61 and 67) and the southeast Pacific (FAO area 87) . It was likely that the exploitation of the fishable stocks was well monitored in the areas of the northwest Atlantic (FAO area 21) , the eastern central Atlantic (FAO area 34) and the northeast Pacific (FAO area 67) through appropriate management measures such as annual harvest level, establishment of total allowable catch etc. The marine fisheries resources that have made contribution to the world production, despite expansion of 200 EEZ by coastal states, were sardinellas, Atlantic cod, blue whiting and squids in the Atlantic Ocean : tunas which mainly include skipjack, yellowfin and bigeye tuna, croakers and pony fishes in the Indian Ocean : and sardine, Chilean pilchard, Alaska pollock, tunas (skipjack and yellowfin tuna) , blue grenadier and blue whiting including anchoveta in the Pacific Ocean. It was identified that both fishery production and its export since introduction of the new regime in the sea were dominated by such coastal states as USA, Canada, Indonesia, Thailand, Mexico, South Africa and Newzealand. But difficulties have been experienced in the European countries including Norway, Spain, Japan and Rep. of Korea. Therefore, majority of coastal states are unlikely to have yet undertaken proper utilization as well as rational management of marine living resources in their jurisdiction during the last two decades. The main target species groups which led the world fishery production to go up were Alaska pollock, cods, tunas, sardinellas, chub and jack mackerel and anchoveta. These stocks are largely expected to continue to contribute to the production. The fisheries resources which are unexploited, underexploited and/or lightly exploited at present and which will be contributed to the world production in future are identified with cephalopods, Pacific jack mackerel and Atlantic mackerel, silver hake including anchovies. These resources mainly distribute in the Pacific regions, especially FAO statistical fishing areas 67, 77 and 87. It was likely to premature to conclude that the new regime in the sea was only in favour of coastal states in fishey production.

  • PDF

Analyzing Market Integration of Wild Caught Fish Species (자연산 어류의 시장 통합성 분석)

  • Kim, Do-Hoon
    • The Journal of Fisheries Business Administration
    • /
    • v.44 no.1
    • /
    • pp.71-79
    • /
    • 2013
  • This study is aimed to estimate market integration of wild caught fish species on the Korean market, using both multivariate and bivariate cointegration analysis. For the analysis of market integration between wild caught fish species, major four fish species those are most popular fish in the market and caught by the large purse seine fishery-chub mackerel, jack mackerel, hairtail and spanish mackerel-were selected as analytical target fish species. And their real monthly price data from January 2000 to December 2011 were used in the analysis. The results of the multivariate cointegration test for four wild caught fish species showed that there would be long-term equilibrium relationships among prices of four wild caught fish species, and consequently, the markets for wild caught fish species were estimated to be integrated. The results of exclusion test and bivariate cointegration test also supported that there would be a clear evidence to suggest that all target wild caught fish species were cointegrated each other.

Fluctuations of Pelagic Fish Populations in Relation to the Climate Shifts in the Far-East Regions

  • Gong, Yeong;Jeong, Hee-Dong;Suh, Young-Sang;Park, Jong-Hwa;Seong, Ki-Tack;Kim, Sang-Woo;Choi, Kwang-Ho;Han, In-Seong
    • Journal of Ecology and Environment
    • /
    • v.30 no.1
    • /
    • pp.23-38
    • /
    • 2007
  • Based on a time series of ocean climate indices and catch records for seven pelagic fish species in the Tsushima Warm Current (TWC) and Kuroshio-Oyashio Current (KOC) regions from 1910 to 2004, we detected regional synchrony in the long-term fluctuations of the fish populations and identified alternation patterns of dominant species related to climate shifts. The annual catches of Pacific herring, Japanese sardines, Japanese anchovies, jack mackerel, chub mackerel, Pacific saury and common squid in the TWC region fluctuated in phase with those in the KOC region, which suggests that they were controlled by the same basin-wide climate forcing. After the collapse of the herring fishery, the alternation sequence was: sardines (1930s), Pacific saury, jack mackerel, common squid and anchovies ($1950s{\sim}1960s$), herring ($late\;1960s{\sim}early\;1970s$), chub mackerel (1970s) and then sardines (1980s). As sardine biomass decreased in the late stages of the cool regime, catch of the other four species increased immediately during the warm period of the 1990s. Regional differences in the amplitude of long-term catch fluctuations for the seven pelagic fishes could be explained by regional differences in availability, fishing techniques and activity.

Climate change and fluctuations of pelagic fish populations in the Far East region

  • Gong, Yeong;Suh, Young-Sang
    • Journal of Ecology and Environment
    • /
    • v.35 no.1
    • /
    • pp.15-25
    • /
    • 2012
  • Time series of ocean climate indices and catch records were used to identify the alternation patterns of pelagic fish populations in relation to climate regime shifts. During 1910-2008, an orderly alternation of dominant pelagic fish groups was observed in the Tsushima Warm Current (TWC; Yellow Sea-East China Sea-East Sea/Japan Sea) and Kuroshio-Oyashio Current (KOC; Northwestern Pacific) regions. After the collapse of herring fishery in the late 1920s, the sardine (A group) dominated in the 1930s, 3 other species (C group; Pacific saury, jack mackerel, and anchovy) dominated in the 1950s-1960s, chub mackerel (B group) dominated in the 1970s, and then sardine (A group) dominated again during cool regime in the 1980s. As sardine biomass decreased in association with the climate regime shift that occurred in the late 1980s, catches of C group immediately increased after the regime shift and remained at high levels during warm regime in the 1990s. Alternations of dominant fish groups occurred 6 times between 1910 and 2008. The dominant period of the 7 species lasted for 10-20 years. The catch of Pacific sardine in the TWC and KOC regions showed a negative correlation with the catch of the other 5 species (Pacific herring, anchovy, jack mackerel, Pacific saury, and common squid), suggesting that the abundance of the 5 species is strongly affected by the abundance of Pacific sardine in relation to the climate regime shifts. The total catch level of the 7 species in the KOC region was generally higher than that in the TWC region before 1991 but was lower after 1992, suggesting that the fish populations in the Pacific side are shifted to the TWC region by zonal oscillation of the oceanic conditions in relation to the climate regime shift in the late 1980s.

Studies on the Distribution and Fluctuation of the Purse-Seine Fishing Grounds in Relation to Oceanographic Conditions in the East China Sea 1 . The Distribution of Mackerels and Jack Mackerel Fishing Grounds (동지나해의 해황과 선망어장의 분포$\cdot$변동에 관한 연구 1. 고등어$\cdot$전갱이 어장의 분포)

  • CHO Kyu-Dae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.14 no.4
    • /
    • pp.239-252
    • /
    • 1981
  • The East China Sea is an important region as nursery and spawning grounds for pelagic fishes such as jack mackerel, common mackerel etc. , and thus constitutes a major fishing area for purse-seine fishery. The environment surrounding in this region is under the influence of the Yellow Sea Cold Water, China Coastal Water and Kuroshio Current. The purpose of this study was to clarify the effects of oceanographic conditions and thermal fronts on the formation of the fishing grounds for the mackerels in the East China Sea. Through the analyses of fisheries statistics during 1968-1976 and temperature data, the following facts are found: 1) Approximately $70\%$ of the total mackerel(common) catches appeared to be come from the Tsushima Current region which includes Sakai coast of the Japan Sea, eastern Tsushima and Shirase Island, and Jeju Island of Korea. This area covers only about $8\%$ of the East China Sea. 2) Main fishing grounds for the jack mackerel are also centered around the area of southwestern Goto, Shirase and eastern Tsushima Island where the catches accounted for about $54\%$ of the total jack mackerel catches. 3) Fluctuations in annual catches are relatively small in the Tsushima Current region, compared to other regions such as Yellow Sea, southwestern coast of Kyushu and mid-western part of the East China Sea, where the fisheries yields varied considerably due to unstable fishing conditions. 4) It appears that the fishing grounds for the jack mackerel are mainly distributed along the warmer region ($15-20^{\circ}C$) of the thermal front, and those for the common mackerel are in somewhat colder region ($13-16^{\circ}C$) in the Tsushima Current.

  • PDF