• Title/Summary/Keyword: JNK1

Search Result 688, Processing Time 0.027 seconds

Effect of Insulin-like Growth Factor-1 on Bone Morphogenetic Protein-2 Expression in Hepatic Carcinoma SMMC7721 Cells through the p38 MAPK Signaling Pathway

  • Xu, Guan-Jun;Cai, Sheng;Wu, Jian-Bing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1183-1186
    • /
    • 2012
  • Objective: To observe the effect of insulin-like growth factor-1 (IGF-1) on bone morphogenetic protein (BMP)-2 expression in hepatocellular carcinoma SMMC7721 cells. Methods: Cells were divided into blank control, IGF-1, IGF-1 + SB203580, and SB203580 groups. SB203580 was used to block the p38 MAPK signaling pathway. Changes in the expression of BMP-2, p38 MAPK, and phosphorylated p38, MERK, ERK and JNK were determined using reverse transcription polymerase chain reactions (RT-PCR) and Western blot analysis. Results: Protein expression of phosphorylated BMP-2, MERK, ERK, and JNK was significantly up-regulated by IGF-1 compared with the control group ($1.138{\pm}0.065$ vs. $0.606{\pm}0.013$, $0.292{\pm}0.005$ vs. $0.150{\pm}0.081$, $0.378{\pm}0.006$ vs. $0.606{\pm}0.013$, and $0.299{\pm}0.015$ vs. $0.196{\pm}0.017$, respectively; P<0.05). Levels of BMP-2 and phosphorylated MERK and JNK were significantly reduced after blocking of the p38MAPK signaling pathway ($0.494{\pm}0.052$ vs. $0.165{\pm}0.017$, $0.073{\pm}0.07$ vs. $0.150{\pm}0.081$, and $0.018{\pm}0.008$ vs. $0.196{\pm}0.017$, respectively; P<0.05), but such a significant difference was not observed for phosphorylated ERK protein expression ($0.173{\pm}0.07$ vs. $0.150{\pm}0.081$, P>0.05). Conclusion: IGF-1 can up-regulate BMP-2 expression, and p38 MAPK signaling pathway blockage can noticeably reduce the up-regulated expression. We can conclude that the up-regulatory effect of IGF-1 on BMP-2 expression is realized through the p38 MAPK signaling pathway.

Sphigosine-1-Phosphate-Induced ERK Activation Protects Human Melanocytes from UVB-Induced Apoptosis

  • Kim, Dong-Seok;Kim, Sook-Young;Lee, Jai-Eun;Kwon, Sun-Bang;Joo, Young-Hyun;Youn, Sang-Woong;Park, Kyoung-Chan
    • Archives of Pharmacal Research
    • /
    • v.26 no.9
    • /
    • pp.739-746
    • /
    • 2003
  • Ultraviolet B (UVB) is known to induce apoptosis in human melanocytes. Here we show the cytoprotective effect of sphingosine-1-phosphate (S1P) against UVB-induced apoptosis. We also show that UVB-induced apoptosis of melanocytes is mediated by caspase-3 activation and poly(ADP-ribose) polymerase (PARP) cleavage, and that S1P prevents apoptosis by inhibiting this apoptotic pathway. We further investigated three major mitogen-activated protein (MAP) kinases after UVB irradiation. UVB gradually activated c-Jun N-terminal kinase (JNK) and p38 MAP kinase, while extracellular signal-regulated protein kinase (ERK) was inactivated transiently. Blocking of the p38 MAP kinase pathway using SB203580 promoted cell survival and inhibited the activation of caspase-3 and PARP cleavage. These results suggest that p38 MAP kinase activation may play an important role in the UVB-induced apoptosis of human melanocytes. To explain this cytoprotective effect, we next examined whether S1P could inhibit UVB-induced JNK and p38 MAP kinase activation. However, S1P was not found to have any influence on UVB-induced JNK or p38 MAP kinase activation. In contrast, S1P clearly stimulated the phosphorylation of ERK, and the specific inhibition of the ERK pathway using PD98059 abolished the cytoprotective effect of S1P. Based on these results, we conclude that the activation of p38 MAP kinase plays an important role in UVB-induced apoptosis, and that S1P may show its cytoprotective effect through ERK activation in human melanocytes.

Regulation of Gastric Acid Secretion of Liriope platyphylla Extract in Gastroesophageal Reflux Disease

  • Ahn, Sang Hyun;Choi, Il Shin;Kim, Ki Bong
    • The Journal of Korean Medicine
    • /
    • v.42 no.4
    • /
    • pp.150-163
    • /
    • 2021
  • Objectives: The purpose of this study was to confirm the effects of Liriope platyphylla extract on relieving Gastroesophageal reflux disease (GERD) through regulation of acid secretion. Methods: 8-week-old ICR mice were divided into untreated control group (Ctrl), GERD elecitation group (GERDE), Omeprazole administrate group before GERD elicitation (OMA), and Liriope platyphylla extract administrate group before GERD elicitation (LPA). After inducing GERD, gross observation and histological examination were performed and ATP6V1B1 (ATPase H+ Transporting V1 Subunit B1), GRPR (Gastrin-releasing peptide receptor), COX-1 (Cyclooxygenase 1), 8-OHdG (8-hydroxy-2'-deoxyguanosine), Cathelicidin, p-JNK (phospho c-Jun N-terminal kinase) were observed to confirm the damage defense effect of the esophageal mucosa, acid secretion regulation, antioxidant, anti-inflammatory, mucosal protection, and apoptosis regulation Results: OMA and LPA showed lower levels of damage compared to GERDE in gross observation and histological examination. ATP6V1B1, GRPR, and 8-OHdG showed lower positive reactions in OMA and LPA than in GERDE. COX-1 were less positive in GERDE and OMA than in Ctrl, but showed higher secretion in LPA than in Ctrl. Cathelicidin showed a decreased positive reaction in GERDE, OMA and LPA compared to Ctrl, but the decrease in positive reaction was smaller in OMA and LPA compared to GERDE. p-JNK showed increased positive reaction in GERDE, OMA and LPA than in Ctrl, but the increase in the positive reaction was smaller in the OMA and LPA compared to GERDE. Conclusions: The effects of Liriope platyphylla extract on esophageal mucosal damage protection, acid secretion regulation, antioxidant, anti-inflammatory, mucosal protection and apoptosis regulation were confirmed.

HMGB1 increases RAGE expression in vascular smooth muscle cells via ERK and p-38 MAPK-dependent pathways

  • Jang, Eun Jeong;Kim, Heejeong;Baek, Seung Eun;Jeon, Eun Yeong;Kim, Ji Won;Kim, Ju Yeon;Kim, Chi Dae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.5
    • /
    • pp.389-396
    • /
    • 2022
  • The increased expression of receptors for advanced glycation end-product (RAGE) is known as a key player in the progression of vascular remodeling. However, the precise signal pathways regulating RAGE expression in vascular smooth muscle cells (VSMCs) in the injured vasculatures are unclear. Given the importance of mitogen-activated protein kinase (MAPK) signaling in cell proliferation, we investigated the importance of MAPK signaling in high-mobility group box 1 (HMGB1)-induced RAGE expression in VSMCs. In HMGB1 (100 ng/ml)-stimulated human VSMCs, the expression of RAGE mRNA and protein was increased in association with an increase in AGE-induced VSMC proliferation. The HMGB1-induced RAGE expression was attenuated in cells pretreated with inhibitors for ERK (PD98059, 10 μM) and p38 MAPK (SB203580, 10 μM) as well as in cells deficient in ERK and p38 MAPK using siRNAs, but not in cells deficient of JNK signaling. In cells stimulated with HMGB1, the phosphorylation of ERK, JNK, and p38 MAPK was increased. This increase in ERK and p38 MAPK phosphorylation was inhibited by p38 MAPK and ERK inhibitors, respectively, but not by JNK inhibitor. Moreover, AGE-induced VSMC proliferation in HMGB1-stimulated cells was attenuated in cells treated with ERK and p38 MAPK inhibitors. Taken together, our results indicate that ERK and p38 MAPK signaling are involved in RAGE expression in HMGB1-stimulated VSMCs. Thus, the ERK/p38 MAPK-RAGE signaling axis in VSMCs was suggested as a potential therapeutic target for vascular remodeling in the injured vasculatures.

L-AHG-mediated Suppression of M1 Polarization and Pro-inflammatory Signaling Pathways in LPS-stimulated RAW264.7 Macrophages (LPS에 의해 자극된 RAW264.7 대식세포에서 L-AHG에 의한 M1 분극화 및 친염증 신호 경로의 억제)

  • Won Young Jang;Shin Young Park;Ki Youn Kim;Do Youn Jun;Young-Seuk Bae;Young Ho Kim
    • Journal of Life Science
    • /
    • v.34 no.7
    • /
    • pp.443-452
    • /
    • 2024
  • This study aimed to examine the influence of 3,6-anhydroxygalactose (L-AHG) on the pro-inflammatory M1 polarization and pro-inflammatory responses observed in the RAW264.7 mouse macrophage cell line following stimulation with lipopolysaccharides (LPS). L-AHG exhibited a significant and dose-dependent inhibition of inducible nitric oxide synthase (iNOS) expression, a hallmark of M1 polarization, and subsequent NO production in LPS-stimulated RAW264.7 cells. Furthermore, the LPS-induced upregulation of cyclooxygenase-2 (COX-2), which drives the production of prostaglandin E2, an inflammatory mediator, was also inhibited by L-AHG. L-AHG did not affect the LPS-triggered Toll-like receptor 4 (TLR4)-mediated pro-inflammatory signaling pathway, which culminated in the activation of transforming growth factor-β-activated kinase 1 (TAK1). However, it was observed to inhibit the generation of reactive oxugen species (ROS) in a dose-dependent manner, as well as the TAK1-driven activation of JNK and p38 MAPK. Given that the active p38 MAPK is known to contribute to the assembly of active nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, which catalyzes the intracellular generation of pro-inflammatory ROS in LPS-stimulated macrophages, the dose-dependent reduction in the LPS-induced ROS generation by L-AHG may be mainly due to the prevention of TAK1-driven activation of p38 MAPK. Together, these results demonstrate that the L-AHG-mediated inhibition of the TAK1-JNK/p38 MAPK activation phase of the pro-inflammatory signaling pathway in LPS-stimulated RAW264.7 cells by L-AHG represents a promising mechanism for suppressing M1 polarization and pro-inflammatory responses in macrophages.

The Effects of Marigold(Tagetes L.) Extract and Calendula(Calendula officinalis L.) Extract on Collagen Growth and MMP-1 Expression in Human Dermal Fibroblasts (메리골드(Tagetes L.)와 카렌듈라(Calendula officinalis L.) 추출물이 인간 섬유아세포에서 콜라겐 생성 및 MMP-1 발현에 미치는 영향)

  • Park, Eun-sun;Kim, Su-mi;Moon, Ji-sun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.769-777
    • /
    • 2017
  • To research the effects of marigold extract, which is used mixed with calendula extract, on collagen growth and MMP-1 expression in human fibroblast, we measured cytotoxicity, collagen growth and MMP-1 expression by using HDF cells. The result of measurement showed over 80% cell survival rate in $5{\sim}100{\mu}g/mL$ concentration of marigold extract and calendula extract for HDF cells, which indicates there is no cytotoxicity. The result of measuring collagen synthetic abilities showed both types of extract had collagen synthetic ability increase dose dependently, by 25% in $100{\mu}g/mL$ concentration of marigold extract, and by 7% in $100{\mu}g/mL$ concentration of calendula extract. The result of experimenting the effect on MMP-1 expression showed that both types of extract suppress MMP-1 expression. The result of observing phosphorylation of p-JNK and p-ERK, which are known to be involved with MMP-1 expression, revealed that marigold extract effectively suppresses MMP-1 expression through signaling pathway of p-JNK and p-ERK. The above results confirm the wrinkle improvement effect of marigold extract, and furthermore, it can be used as a cosmetic ingredient for anti-aging.

Effects of KHchunggan-tang on the Nonalcoholic Fatty Liver Disease in Palmitate-induced Cellular Model (Palmitate로 유발된 비알코올성 지방간 모델에 대한 KH청간탕(淸肝湯)의 효과 연구)

  • Han, Chang-Woo;Lee, Jang-Hoon
    • The Journal of Korean Medicine
    • /
    • v.32 no.1
    • /
    • pp.109-120
    • /
    • 2011
  • Objectives: The aim of this investigation was to evaluate the efficacy of KHchunggan-tang aqueous extract on the experimental nonalcoholic fatty liver disease(NAFLD) induced by palmitate. Materials and Methods: To generate a cellular model of NAFLD, we used HepG2 cells, a human hepatoma cell line, treated with 0.5 mM palmitate. By this cellular model, effects of KHchunggan-tang aqueous extract were evaluated. Intracellular lipid accumulation, free radical formation, and apoptosis were detected by Nile red staining, 2',7'-dichloroflourescin diacetate(H2DCF-DA), and 4',6-diamidino-2-phenylindole(DAPI)/propidium iodide(PI) staining, respectively. Some proteins related with NAFLD were determined by western blot. Results: Typical pathological features of NAFLD occurred in the cellular model. Palmitate increased the levels of intracellular lipid vacuoles, decreased cell viability, and increased apoptosis. Palmitate increased free radical formation and lipid peroxidation, too. However, KHchunggan-tang aqueous extract reduced palmitate-induced pathologic features, i.e. steatosis, free radical formation, and apoptosis. In addition, KHchunggan-tang aqueous extract suppressed palmitate-activated c-Jun N-terminal kinase(JNK) signaling, and SP600125, a JNK inhibitor, significantly reversed the palmitate-induced pathologic changes as KHchunggan-tang aqueous extract. It means that the signaling pathway other than JNK can be involved in the KHchunggan-tang mediated cellular protection of palmitate-treated Hep G2 cells. Conclusions: These results suggest that KHchunggan-tang aqueous extract has hepatoprotective effects on NAFLD with combined properties in cellular steatosis, ROS production, and cytoprotection, and thus may have valuable clinical applications for treatment of this chronic liver disease.

Caesalpinia sappan L. Induces G2/M Phase Cell Cycle Arrest in Human Lymphoma U937 Cells (소목(蘇木) 물추출물의 G2/M기 정지를 통한 U937세포의 성장억제 효과)

  • Jeon, Byung-Jae;Ju, Sung-Min;Yang, Hyun-Mo;Kim, Bo-Hyun;Kim, Won-Sin;Jeon, Byung-Hun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.1
    • /
    • pp.55-60
    • /
    • 2010
  • Caesalpinia sappan L. (C. sappan) has long been used in traditional medicine as an emmenagogue, hemostatic and anti-inflammatory agent. The present study investigated the effects of water extract of C. sappan in human lymphoma U937 cells. The proliferation of U937 cells was decreased by C. sappan in a dose-dependently manner. Anti-proliferative effect of C. sappan on U937 cells was associated with G2/M phase arrest, which was mediated by regulating the expression of p21 protein. Moreover, phosphorylation of JNK and p38 was increased by C. sappan. Blockade of JNK and p38 was significantly inhibited C. sappan-induced G2/M phase arrest. Taken together, these results suggest that Anti-proliferative effect of C. sappan on U937 is assocated with G2/M phase cell cycle arrest by expression of p21 protein and, JNK and p38 activation.

Delphinidin enhances radio-therapeutic effects via autophagy induction and JNK/MAPK pathway activation in non-small cell lung cancer

  • Kang, Seong Hee;Bak, Dong-Ho;Chung, Byung Yeoup;Bai, Hyoung-Woo;Kang, Bo Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.5
    • /
    • pp.413-422
    • /
    • 2020
  • Delphinidin is a major anthocyanidin compound found in various vegetables and fruits. It has anti-oxidant, anti-inflammatory, and various other biological activities. In this study we demonstrated the anti-cancer activity of delphinidin, which was related to autophagy, in radiation-exposed non-small cell lung cancer (NSCLC). Radiosensitising effects were assessed in vitro by treating cells with a subcytotoxic dose of delphinidin (5 μM) before exposure to γ-ionising radiation (IR). We found that treatment with delphinidin or IR induced NSCLC cell death in vitro; however the combination of delphinidin pre-treatment and IR was more effective than either agent alone, yielding a radiation enhancement ratio of 1.54 at the 50% lethal dose. Moreover, combined treatment with delphinidin and IR, enhanced apoptotic cell death, suppressed the mTOR pathway, and activated the JNK/MAPK pathway. Delphinidin inhibited the phosphorylation of PI3K, AKT, and mTOR, and increased the expression of autophagy-induced cell death associated-protein in radiation-exposed NSCLC cells. In addition, JNK phosphorylation was upregulated by delphinidin pre-treatment in radiation-exposed NSCLC cells. Collectively, these results show that delphinidin acts as a radiation-sensitizing agent through autophagy induction and JNK/MAPK pathway activation, thus enhancing apoptotic cell death in NSCLC cells.

Celastrol suppresses expression of adhesion molecules and chemokines by inhibiting JNK-STAT1/NF-κB activation in poly(I:C)-stimulated astrocytes

  • An, Soo Yeon;Youn, Gi Soo;Kim, Hyejin;Choi, Soo Young;Park, Jinseu
    • BMB Reports
    • /
    • v.50 no.1
    • /
    • pp.25-30
    • /
    • 2017
  • In the central nervous system, viral infection can induce inflammation by up-regulating pro-inflammatory mediators that contribute to enhanced infiltration of immune cells into the central nervous areas. Celastrol is known to exert various regulatory functions, including anti-microbial activities. In this study, we investigated the regulatory effects and the mechanisms of action of celastrol against astrocytes activated with polyinosinic-polycytidylic acid (poly(I:C)), a synthetic dsRNA, as a model of pro-inflammatory mediated responses. Celastrol significantly inhibited poly(I:C)-induced expression of adhesion molecules, such as ICAM-1/VCAM-1, and chemokines, such as CCL2, CXCL8, and CXCL10, in CRT-MG human astroglioma cells. In addition, celastrol significantly suppressed poly(I:C)-induced activation of JNK MAPK and STAT1 signaling pathways. Furthermore, celastrol significantly suppressed poly(I:C)-induced activation of the $NF-{\kappa}B$ signaling pathway. These results suggest that celastrol may exert its regulatory activity by inhibiting poly(I:C)-induced expression of pro-inflammatory mediators by suppressing activation of JNK MAPK-STAT1/$NF-{\kappa}B$ in astrocytes.