• Title/Summary/Keyword: JMIS

Search Result 294, Processing Time 0.017 seconds

Shipboard Secret Electronic Voting System for Information and Communication Technology-isolated Ocean Crews

  • Huh, Jun-Ho;Koh, Taehoon;Seo, Kyungryong
    • Journal of Multimedia Information System
    • /
    • v.3 no.3
    • /
    • pp.77-84
    • /
    • 2016
  • The sailors on seagoing ships experience much difficulty in communicating with their families, friends or associates ashore due to communication cost or technical difficulties so that they are sometimes unable to adapt to the rapid social changes promptly. This is mainly the result of an insufficient Information and Communication Technology (ICT)-environment on their ships. To surmount such a problem, an electronic shipboard voting system that guarantees the publicness and absolute secrecy in voting process has been proposed in this paper. The system not only helps crews to catch up with up-to-date news and provides them a feeling that they are being connected to the everyday lives of the outside world, but also allows them to cast their votes based on the newly acquired information (e.g., current political or economic situations in their respective regions and etc.).

Privacy of Capability Token in the IoT Service System

  • Jang, Deresa;Kim, Jin-bo;Kim, Mi-Sun;Seo, Jae-Hyun
    • Journal of Multimedia Information System
    • /
    • v.3 no.3
    • /
    • pp.103-110
    • /
    • 2016
  • The recent development of the Internet of things (IoT) has led to the introduction of new access control measures. Even during the access control for security, however, there might be privacy infringements due to unwanted information provision and collection. Measures to control this process are therefore required. This paper defines the structure and policies of tokens to protect privacy that can be exposed through the token information when you use the capability token in the IoT service system.

Efficient Superpixel Generation Method Based on Image Complexity

  • Park, Sanghyun
    • Journal of Multimedia Information System
    • /
    • v.7 no.3
    • /
    • pp.197-204
    • /
    • 2020
  • Superpixel methods are widely used in the preprocessing stage as a method to reduce computational complexity by simplifying images while maintaining the characteristics of the images in the computer vision applications. It is common to generate superpixels of similar size and shape based on the pixel values rather than considering the characteristics of the image. In this paper, we propose a method to control the sizes and shapes of generated superpixels, considering the contents of an image. The proposed method consists of two steps. The first step is to over-segment an image so that the boundary information of the image is well preserved. In the second step, generated superpixels are merged based on similarity to produce the target number of superpixels, where the shapes of superpixels are controlled by limiting the maximum size and the proposed roundness metric. Experimental results show that the proposed method preserves the boundaries of the objects in an image more accurately than the existing method.

Detection of Dangerous Situations using Deep Learning Model with Relational Inference

  • Jang, Sein;Battulga, Lkhagvadorj;Nasridinov, Aziz
    • Journal of Multimedia Information System
    • /
    • v.7 no.3
    • /
    • pp.205-214
    • /
    • 2020
  • Crime has become one of the major problems in modern society. Even though visual surveillances through closed-circuit television (CCTV) is extensively used for solving crime, the number of crimes has not decreased. This is because there is insufficient workforce for performing 24-hour surveillance. In addition, CCTV surveillance by humans is not efficient for detecting dangerous situations owing to accuracy issues. In this paper, we propose the autonomous detection of dangerous situations in CCTV scenes using a deep learning model with relational inference. The main feature of the proposed method is that it can simultaneously perform object detection and relational inference to determine the danger of the situations captured by CCTV. This enables us to efficiently classify dangerous situations by inferring the relationship between detected objects (i.e., distance and position). Experimental results demonstrate that the proposed method outperforms existing methods in terms of the accuracy of image classification and the false alarm rate even when object detection accuracy is low.

Distributed Multimedia Scheduling in the Cloud

  • Zheng, Mengting;Wang, Wei
    • Journal of Multimedia Information System
    • /
    • v.2 no.1
    • /
    • pp.143-152
    • /
    • 2015
  • Multimedia services in the cloud have become a popular trend in the big data environment. However, how to efficiently schedule a large number of multimedia services in the cloud is still an open and challengeable problem. Current cloud-based scheduling algorithms exist the following problems: 1) the content of the multimedia is ignored, and 2) the cloud platform is a known parameter, which makes current solutions are difficult to utilize practically. To resolve the above issues completely, in this work, we propose a novel distributed multimedia scheduling to satisfy the objectives: 1) Develop a general cloud-based multimedia scheduling model which is able to apply to different multimedia applications and service platforms; 2) Design a distributed scheduling algorithm in which each user makes a decision based on its local information without knowing the others' information; 3) The computational complexity of the proposed scheduling algorithm is low and it is asymptotically optimal in any case. Numerous simulations have demonstrated that the proposed scheduling can work well in all the cloud service environments.

Complex Discrete Systems Graph Simulation

  • Kadirova, Delovar;Kadirova, Aziza
    • Journal of Multimedia Information System
    • /
    • v.2 no.3
    • /
    • pp.263-274
    • /
    • 2015
  • The subject of this work is the complex discrete systems simulation special features with the aid of dynamic graph models. The proposed simulation technique allows to determine the ways for tasks solutions in terms of discrete systems analysis and synthesis of various complication: one-dimensional and multidimensional, steady and unstable, with the pulse elements abnormal operating mode and others. Often complex control systems analysis and synthesis task solutions, via classical approach comes out to be insolvent, because of the computational problems. The application of graph models allows to perform clear and strict characterization and computer procedures automation. The optimal controls synthesis algorithm presented in this paper, transferring the discrete system from target initial state to target final state within the minimum time, allows to consider the zero initial conditions systems, with the initial potential energy, with the control actions limitations and complex pulse elements operating mode.

Normalization Framework of BCI-based Facial Interface

  • Sung, Yunsick;Gong, Suhyun
    • Journal of Multimedia Information System
    • /
    • v.2 no.3
    • /
    • pp.275-280
    • /
    • 2015
  • Recently brainwaves are utilized diversely in the field of medicine, entertainment, education and so on. In the case of medicine, brainwaves are analyzed to estimate patients' diseases. However, the applications for entertainments usually utilize brainwaves as control signal without figuring out the characters of the brainwaves. Given that users' brainwaves are different each other, a normalization method is essential. The traditional brainwave normalization approaches utilize normal distribution. However, those approaches assume that brainwaves are collected enough to conduct normal distribution. When the few amounts of brainwaves are measured, the accuracy of the control signal based on the measured brainwaves becomes low. In this paper, we propose a normalization framework of BCI-based facial interfaces for novel volume controllers, which can normalizes the few amounts of brainwaves and then generates the control signals of BCI-based facial interfaces. In the experiments, two subjects were involved to validate the proposed framework and then the normalization processes were introduced.

Development of a Modified Random Signal-based Learning using Simulated Annealing

  • Han, Chang-Wook;Lee, Yeunghak
    • Journal of Multimedia Information System
    • /
    • v.2 no.1
    • /
    • pp.179-186
    • /
    • 2015
  • This paper describes the application of a simulated annealing to a random signal-based learning. The simulated annealing is used to generate the reinforcement signal which is used in the random signal-based learning. Random signal-based learning is similar to the reinforcement learning of neural network. It is poor at hill-climbing, whereas simulated annealing has an ability of probabilistic hill-climbing. Therefore, hybridizing a random signal-based learning with the simulated annealing can produce better performance than before. The validity of the proposed algorithm is confirmed by applying it to two different examples. One is finding the minimum of the nonlinear function. And the other is the optimization of fuzzy control rules using inverted pendulum.

Curvature and Histogram of oriented Gradients based 3D Face Recognition using Linear Discriminant Analysis

  • Lee, Yeunghak
    • Journal of Multimedia Information System
    • /
    • v.2 no.1
    • /
    • pp.171-178
    • /
    • 2015
  • This article describes 3 dimensional (3D) face recognition system using histogram of oriented gradients (HOG) based on face curvature. The surface curvatures in the face contain the most important personal feature information. In this paper, 3D face images are recognized by the face components: cheek, eyes, mouth, and nose. For the proposed approach, the first step uses the face curvatures which present the facial features for 3D face images, after normalization using the singular value decomposition (SVD). Fisherface method is then applied to each component curvature face. The reason for adapting the Fisherface method maintains the surface attribute for the face curvature, even though it can generate reduced image dimension. And histogram of oriented gradients (HOG) descriptor is one of the state-of-art methods which have been shown to significantly outperform the existing feature set for several objects detection and recognition. In the last step, the linear discriminant analysis is explained for each component. The experimental results showed that the proposed approach leads to higher detection accuracy rate than other methods.

A Short Course Development and Analysis to Recognize Importance of Software for Youth using Arduino and App Inventor

  • Shim, Jooeun;Ko, Jooyoung;Shim, Jaechang
    • Journal of Multimedia Information System
    • /
    • v.2 no.1
    • /
    • pp.187-192
    • /
    • 2015
  • The aim of this study was to develop and analyze a short course educating App Inventor and Arduino that showed the importance of software for youth. The course consists of a total of 10 missions for a 4 hour course divided into 2 parts, each 2 hours respectively. We conducted a basic course of Arduino for hardware and software, Processing for server programming, and App Inventor for programming for smartphones. The final mission was to send a signal to a server with a smartphone and to control light connected to a relay which passes Arduino connected with a server and serial communication. Participants completed 95% of missions, and we found the course had an educational effect for improving creativity and realization of software importance.