
Journal of Multimedia and Information System VOL. 2, NO. 3, September 2015(pp. 263-274): ISSN 2383-7632(Online) 
http://dx.doi.org/10.9717/jmis.2015.2.3.263 

263 

 

I. INTRODUCTION 

The growing control systems complexity set new 
problems, connected with  
 structural properties to be explored; 
 need to systematize the mathematical formulation 

of various physical nature elements;  
 analysis technique unification, as well as analysis 

and synthesis; 
 need to jump over the computational problems; 
 aspiration for maximal clearness and simplicity.  
The special value it has in terms for discrete 

automatic control systems. Here is the presence of 
dozens pulse elements, that operate according to 
various linear and non-linear laws, multiple connection, 
lending variety and complexity to the process structures 
[1, 2, 5-7].  

At the heart of discrete systems mathematical tools 
are posited the lattice functions, finite differences and 
sums, linear and non-linear finite-difference equations. 

Moreover, in classical works much attention was 
given to the problems of «close up» some aspects 
continuous and discrete systems theory. In particularly, 

such related to some certain works, covering the 
discrete systems analysis and synthesis frequency 
methods, Laplace transformation and Laplace discrete 
transformation as well as other aspects [1, 2, 5, 6, 8-10]. 

The graph models application is compared favourably 
in terms of its simplicity as well as availability of huge 
awareness. Showing the system in more detailed, 
compared to structural diagram, it holds the visual 
presentation in terms of signal trip over the system. 
That simplifies not just the transfer function definition, 
but demonstrates the influence of any parameter on it, 
gives a chance to obtain the variety possible structures 
and practical recommendations in terms of explicit 
structures decision to implement the necessary 
connections to system [4, 11]. 

 Should be noted, that the most of works on graphs 
application cover the problems in static formulation. 
Unlike the current methods in this paper were 
demonstrated the dynamic graphs application state 
variables graphs category and pulse flow graphs, as 
well as hybrid graphs for complex discrete systems 
simulation. 
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II. MODELING METHOD 
 

Let’s consider the linear fixed system l-order, 
described across the switching intervals by vector-
matrix differential formula  
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    (1) 

 

where jTt  ; T 0 ; 

)(x


 − )1( l vector of process state variable (control 

object) with coordinates lxxx ,...,, 21 ; 

)(u


 − )1( N vector of input state variable with the 

coordinates Nuuu ,...,, 21 ; 

A


 − )( ll  coefficients matrix real constant; 

B


− )( Nl   control matrix real constant. 

Applying the definition «expanded dimensionality 
system», the formula  (1) will be redrafted as [1]: 
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state vector with the coordinates  Nuuu ,...,, 21 ; 

lxxx ,...,, 21 )( lNn  ; 

A
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 − )( nn expanded dimensionality system coefficient 

matrix. 

Equation of state (2) describes the system behavior 
within the intervals between the switching moments, 
state variables varying within the pulse elements 
closure moments characterizes by the   transient state 
formulas: 
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The solution of differential equation (2) will write as  
 

     ,0 VV


    (4) 

 
where the expanded transition matrix may be defined 
through the model discussion in state variables or for the 
general cases from expressions: 
 

    11   AJpL
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Here  


 − )( nn  matrix with the coordinates 

)(ija , that in the event of time-invariant systems present 

as the constant values, or depending on time for non-
stationary systems. 

System coordinate values at the pulse element closure 
moments shall be defined according to recursion 

 

     jTVBTTjV

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

1 .  (8) 

 

Have noticed, that in major cases the matrixes 


, B


 

and H


 carry a big number of nulls, i.e. come as low of 
density. Therefore, direct application of formulas (7) or (8) 
even for the easiest discrete systems, lead to perform 
overmuch operations.  

 
2.1. State Variables Graphs 

Handling redundant information may be excluded if to 
apply the state variables graphs. 

State Variables Graph (SVG) shall mean the oriented   
weighted graph G(V,Г), vertex set of which

   , XUV  where  U  is the subset, conform to 

input variables;  X  subset, conform to control object 

sate variables; Г - function V in V. 
Each graph edge connected to figure (function), named 

as branch emission ikt . Each state point (node) holds 

connected with that variable, called as the main signal ix . 

 Emission ija  graph is equal to signal ratio, arising in 

j dependent node, to signal i dependent source. The 

emission ija  is the matrix  


 element and shall be 

defined according to SVG based on Mezon formula [3] 
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where P – graph process emission, L– back loop of a 
graph emission, * – shall mean: «omit terms,  containing 
the products, related to back loops and processes, related 
to between themselves loops». 

In accordance with the type, wherein has been given 
transfer function, shall be selected graph creation model 
(Figure1). 

 
2.2. Pulse Flow Graphs  

In section 2.1 has been demonstrated the discrete 
control systems simulation on the basis of state 
variables graphs application. The SVG application 
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assumes the control object mathematical model 
availability of the form of differential equations. 
Moreover, frequently the control objects mathematical 
models preset with the aid of pulse transient functions. 

 

 
 

Fig. 1. SVG, constructed with the aid of machine-level-
programming (a), cascade programming (b), and parallel 
programming (c) 

 

The pulse transient functions may be defined either 
based on experiment or formula 

 

  )},({1 pALtA     (9) 

	

With the control object known pulse transient 
function as well as zero initial conditions it is 
reasonable to make use the Pulse Flow Graphs (PFG).  

Assume, there was given relation ),,,( YFGQ   
where F, Y – some dynasets, G – standardization curve. 
Will impose on standardization curve G a restriction: 

 
if ji  , then .),( Gyf ii    (10) 

 
Further assign to each pair ),( ii yf  the coefficient jia . 

Assume, that the departure unit element Ffi  shall 
be compared with the element Yyi   of arrival 
domain with the weight jia . The present match 
weighted graph  ),,,( YFGQ   in case of, that the 
dynamic set  F comes as the subsequence of short-

period impulse signals type of ),(t and jia – 
represents the impulse transient system function 
coefficients, and define the Dynamic Graph Model 
(DGM) of elemental disconnect process of automatic 
control discrete system (ACDS). 

For illustration, assume ),,,,,,,( 654321 ffffffF 
),,,,,,,( 654321 yyyyyyY  then considering (10) will 

obtain 
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Assign to each pair ),( ii yf  the impulse transient 
function coefficient jia . Finally, will obtain DGM the 
elemental ACDS (Figure 2). In the Figure 2c was 
explained the accepted coefficients selection and 
coefficients identification method with pulse transient 
function for non-steady system continuous part case. 

  

 
 
Fig. 2. DGM elemental ACDS  

 

Through the rules, specified for signal flow graphs, 
based on DGM, one may find the process discrete 
values.  
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2.3. The Hybrid Graph Models  

The pulse flow graphs have been defined as the 
models are very suitable for zero initial conditions 
systems. Let’s consider the availability based on that 
the models, enabling to consider the initial potential 
energy. 

Assume we have system l-order, demonstrated in 
Figure 3a. The pulse flow graph makes the relation 
between the input coordinate f and coordinate output х1 

system to discrete moments. When are the initial 
conditions       0,...,0,0 21 lxxx , then for its record is 
just enough according to object state variables graph to 
find the emissions from these coordinates to coordinate 
output, i.e.  

 

              TxxTxxTxx ll ,0...,,,0,,0 2211  . 

 

Such emissions have the meaning of pulse transient 
function and its derivatives, including (l-1)-st derivative. 
It is necessary to do these functions coefficients sample 
capture with the required sampling interval and do 
totalize the signals from points      0,...,0,0 21 lxxx  
with the system signals, caused by action input. Then 
according to graph model one may define the system 
processes with nonzero initial conditions (Figure 3b). 

Since the similarly models combine with the pulse 
flow graph and state variables graph properties, they 
called as Hybrid Graph Models (HGM). The hybrid 
graph models are comfortable for processes calculation 
within the systems with delay, pulse elements complex 
operating modes, when synthesis of optimum in terms 
of discrete systems operation speed.  
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Fig. 3. HGM of discrete system of l-st order 

The hybrid models application is in fact reasonably 
for initial potential energy systems, if required the 
information regarding the behavior of just coordinate 
output, and the intermediate coordinates are not of 
interest,  or when the performance of synthesis task, 
when half of coordinates are available for measurement. 

Let’s consider the graph models construction 
principles for discrete systems various classes. 

 

III. THE GRAPH MODELS OF DISCRETE 
SYSTEMS 

 
3.1. Step-in Phase Systems  

Will start consideration from SVG for in step-in 
phase systems. To describe the transients within 
discrete systems, account must be taken of pulse 
elements availability (PE) as well as its operating mode. 
The discrete system behavior between pulse element 
switching moments describes by differential formulas 
modes as follows:  
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Where y – system signal output; и – signal input or 
system control signal; }),...,2,1,0{( mJja j  – fixed 
polynom factors )( pA ; }),...,2,1,0{( lIibi  – fixed 
polynom factors )( pB .  

Within the switching moments the state variables 
change shall be described by the formula (3). In state 
variables graph this will be presented as an 
incorporation of complementary groups )}0({)},0({ xu  
and branches with ijb  emissions, to join its indicated 
nodes with the initial conditions nodes )}0({)},0({  xu . 

Discrete system transient state graph just enough for a 
period of time to be constructed: 

   

TjtjT 1 , ,...}1,0{ Jj , 

 

where, Т –is the pulse element switching period. 
Very often within the discrete systems next to pulse 

element comes fixing device, the output signal of which 
is the piecewise constant function 

 

     ,jTyjTfjTu iii    (12) 

TjTjT   0, . 

 

In this case it’s necessary to introduce the nodes
 jTui  and   Tjui 1  as well as the branches with 

the emissions 
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to completed discrete system state variables graph.  

As an example in the Figure 4b has been 
demonstrated the simplex discrete system graph. Graph 
edge, match with fixing device, has been marked by 
dotted line. In the Figure 4c presented the graph for  
the case, when the mentioning occur within the interval 

T  . As illustrated, in this case the graphs within the 
intervals TjjT 1  are presented as two split sub-
graphs, one of which replies to fixing area, the other 
one – to signal capture failure area. 
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Fig. 4. The simplex discrete system and its SVG   

 

Based on constructed SVG one may easily obtain 
recursions to solve analysis and synthesis matters. 

 
3.2. Substandard Systems  

Next consider state variables graphs for discrete 
systems with the pulse elements complex closure mode 
(of substandard systems). To substandard systems may 
be referred the systems with the switching cyclic 
frequency, with the pulse elements finishing closure 
time length, non-linear systems with the length-
modulation. 

Assume, that the switching basic time length within 
the system is equal to T. We divide this period into a 

number of various length intervals. This allow to 
determine easily the discrete system type and according 
to that to construct graph. Substandard system graph 
will contain a few sub-graphs, match with some 
intervals i , which are the pieces of the basic period T.  

To make a comparison, let’s consider first 
substandard discrete control systems calculation by 
state parameters space method [1]. For the interval 

 
)0(, 11 tjTttjTtjT   

 

equation solution (1) will take the form  
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
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Here 0


 transfer matrix for this interval, and the 
transfer initial conditions shall be defined according to 
transient state formula 
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For the interval  )(, 2121 tjTtttjTtjTt   
equation solution (1) will take a form: 
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For interval )(, 11   iiii tjTtttjTtjTt  
equation solution (1) will write down in the form: 
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With respect to formulas (19), (20) the matrices 

iii HB  ,,


 could be different for different intervals of 
elementary switch period. 

Thus, the state variables graph for substandard 
discrete systems it’s necessary to construct in several 
steps according to minor intervals number i , i.e. the 
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graph will consist of few sub-graphs, match with the 
intervals  1tjTtjT  ,  21 tjTttjT  , …, 
 1 ii tjTttjT , …,  TjttjT k 1 .  

It stands to reason, the structure and emissions 
valuations some sub-graphs in general case will be 
differed from one another. Each sub-graph will be built 
according to the system operation mode in terms of 
interval concerned i . Sub-graphs jointing shall be 
performed given, that the state variables  itjTV 


, 

calculated for the situation  jTtti  , will come as 
sources-nodes for the next switch for interval
 1 ii tjTttjT .  

As an illustration in the Figures 5a, 5c presented 
repeated on-off signals system and its graph. Here the 
governor represented as pulsed filter in feedback circuit 
Switch periods cT 211   and cT 312  (Figure 5b), 
unit step function input signal, the initial conditions are 
supposed to be null.    
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Fig. 5. Structural diagram and SVG of discrete system with 
repeated on-off signals 

The complex discrete system state variables graph 

allows to describe, without gaps, the system status all 
over intervals of one period. 

 
3.3. Multivariable Nonlinear Discrete Systems 

Linearity separable within the nonlinear discrete 
systems graph models are presented as weighted 
emissions edges, that vary from time step to time step 
according to the law     jTejTe ii 

.  
Or linearity may be presented as the enhancer with 

the variable gain constant jk . The value 
,...})1,0{(  Jjk j  depends on nonlinear element 

characteristics and remains steady within the pulse 
element switch period.  

State variables graph N -dimensional discrete 
system constructs in similar to previous cases, but will 
be appeared as combination of 2N  sub-graphs, match 
with transmissions channels, where N – present as 
constitution models of status N  of separate 
transmission channels, and the rest  NN 2  – 
indicate the switch-back transmission channels. 

Let’s consider the multivariable nonlinear discrete 
systems SVG construction task based on separate 
elements models. Let’s introduce the signs, accessible 
in terms of multidimensional systems dynamics 
description: rF


 – input signal vector r-shape channel; 

rY


 – output signal vector r-shape channel; rA


– 
transition matrix (weighted transposed incident matrix) 
r-shape transmission channel; rkC


– transition matrix 

(rk) switch-back channel (weighted transposed incident 
matrix). With scalar values rk

ji
r
ji

r
n

r
n cayf ,,,  are marked 

accordingly the column-vectors components and state 
variables graph edges transmission factors.  

To describe the multidimensional system 
transmission channels state variables let’s introduce the 
signs: rr XX , – column-vector and state variables 
variety r-shape separate transmission channel; 

rkrk XX , – column-vector and variety of state 
variables rk-shape switch-back transmission channel; 

r
lx – l state variable r-shape separate transmission 

channel; rk
lx  – l state variable rk-shape switch-back 

transmission channel. 
Top points )1(),1( TjxTjx rk

i
r
i   present as the 

output vector components, the top points 
 nijTxjTx rk

r
r
i ,...,2,1),(),(  input vector components 

of transmission channel, preset by its transition matrix  
 

)()1( jTXATjX rrr


 ,  (21) 

)()1( jTXCTjX rkrkrk


 .  (22) 

 

The signals within some spots shall be defined 
according to formulas:   
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



n

i

r
i

r
li

r
l jTxaTjx

1

)()1( ,   (23) 





n

i

rk
i

rk
li

rk
l jTxcTjx

1

)()1( .  (24) 

 

Thus, the output signals r coordinate of N-
dimensional of non-linear discrete system shall be 
defined out of the formula:   

 





N

rkk

rkrr TjxTjxTjy
)(,1
11 )1()1()1( . (25) 

 

Multidimensional control object graph model will 
result from the all separate and switch-back 
transmission channels models association: 

 
rk
t

r
tt UGGG  ,   (26) 

where 

)),1(),(( rrrr
t VTjXjTXG   (27) 

));1(()1());(()( TjxTjXjTxjTX r
i

r
i

r
i

r 

 )(),)1(),(( , TaTjxjTxV r
lm

r
m

r
l

r  ; 

 

)),1(),(( rkrkrkrk
t VTjXjTXG   (28) 

));1(()1());(()( TjxTjXjTxjTX rk
i

rkrk
i

rk 

  )(,)1(),( , TcTjxjTxV rk
lm

rk
m

rk
l

rk  ; 

krNkrnmli  ;,...,2,1,;,...,2,1,, . 

 

With regard to all stated let’s formulate the graph 
model construction algorithm for nonlinear 
multidimensional discrete systems: 

 
1. Laid down the one time reference scale for  pulse 

elements closure moments PE1, PE2,..., PEN, : 
 

Ntttt   21
*
~

, 

 
whereti=(·), i=1, 2,..., N – the variety of closure 
momentsi pulse element. 

2. Shall be constructed the input signals graph models 
(similar to continuous part models), forming units, 
pulse-wise components, nonlinear elements. 

3. The entire system topological model constructs from 
the topological models separate parts with the 
provision for system microstructure and its observation 

interval across the axis *
~t . If the system elements graph 

models been defined as ),,( fiif
t VefG  – input 

signals models,  ),ˆ,( NEiiNE
t VeeG  nonlinear 

elements models,  ),ˆ,ˆ( * PEiiPE
t VeeG pulse elements 

models, rk
t

r
tt GGG  – system continuous parts 

models, then the multidimensional nonlinear discrete 
system general graph model  will be defined as the all 
these graph models association  

 

t
LF
t

PE
t

NE
t

f
t

c
t GGGGGG  .     (29) 

 

As an illustration in the Figures 6a, 6b demonstrated 
the bivariate structural diagram and the state variables 
graph match with. 
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Fig. 6. Non-linear discrete system (a), graph system model (b) 
 

 

IV. DISCRETE SYSTEMS SYNTHESIS 
 

Let’s consider the discrete system of n–order with the 
nonzero initial conditions. Task: to find the optimal 
controls subsequence and state feedback law, switching 
the control object from preset initial state   00 x   to 
balance condition within the minimum time. 

Let’s assume that the balanced state is the state, when 
the all system coordinates take up the zero value, i.e.   
  0lTx  where nl   for controls free systems and 

gnl  – if actuating signals restrictions. Prior to 
switch to HGM presented of continuous system part, 
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need to decide the state variables and construct the state 
variables graph. Based on graph one may find 
weighting function and its derivatives 
      tatata n 1,...,,   of the object itself and weighting 

function and its derivatives of presented continuous part
      twtwtw n 1,...,,  . Making coefficients sample 

capture, weighting functions were obtained with Т 
interval (Т – is the signals sampling time object input), 
do construction HGM for the interval (0; пТ). The latter 
represents as п sub-graphs, constructed for each system 
coordinate separately (Figure 7). 
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Fig. 7. The system HGM  

 

Straight by sub-graphs sight one may write the 
process state equation for balance point: 
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n
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n
n

n
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n
nnn

nnnn

nnnnn

nnnn

nnnnn





 (30) 

 

If we substitute to (30) the highest response speed 
conditions 0)();...;(;0)( 21  nTxnTxnTx n , will 
obtain the equations required best sequence 

)}1({),...,({),0({)}({   TnuTuujTu  for case, 
when no restrictions for equations.  

To discover the optimal control law it is required to 
define the control action )( jTu  as state coordinate 
function  

 

)(...)()()( 2211 jTxjTxjTxjTu nn  .  (31) 

 

The feedback coefficients may be discovered 
according to the same hybrid graph model. Let’s 
substitute the obtained control values in formulas (30) 
type and will define state coordinates values in instants 
earlier, i.e. the values 
 

).1(),...,1(),1(

...;);2(),...,2(),2();(),...,(),(

21

2121

TnxTnxTnx

TxTxTxTxTxTx

n

nn


  

 
Finally will obtain the following the non-

homogeneous equations linear system: 
 

       
       

       




















TnxTnxTnxTnu

TxTxTxTu

xxxu

nn

nn

nn

1...111

................................................................

...

0...000

2211

2211

2211







(32) 

 

Based on that will find the desired feedback 
coefficients, being the inverse matrix elements 
according to: 

 

]...[ 21 n 


.   (33) 

 

In the event of pulse elements complex operating 
mode discrete system, computing chain will be 
unchanged. It’s just enough to make the required 
sample capture of weighting function coefficients as 
well as its derivatives with provision for sampling 
moments. If there have been applied restrictions for 
actuating signals saturation type, the response time will 
be going up, that is why the hybrid graph need to be 
constructed for interval as ),0( Tgn  .  

Based on mentioned above, we will formulate the 
optimum controls computation chain algorithm and 
inverse matrix of system discrete with the initial 
potential energy: 
 
1. Based on system continuous part transfer function do 

construction of SVG and find the weighting functions 

 ta  object, presented continuous part of  tw  and 

its derivatives          twtwtata nn 11 ,...,;,...,   . 

2. Based on the pulse elements operating mode we do 
make weighting functions coefficients sample capture 

   11 ,...,,;,...,,  n
jijiji

n
jijiji wwwaaa  , j – epoch of 

observation, i – epoch of pulse advent (j=0, 1,…, n+g; 
i=0, 1,…, n+g). 

3. Do construction the hybrid graph model for the 
moment t=nT, based on that, will find the state 
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variables  nTx  towards the initial state function  

 0x  and controls sequence 1,...,1,0)},({  njjTu . 

4. Considering, that   0nTx , will define out of 

obtained in point 3 equation the sequence )}({ jTu . 

If the all controls are located within the limiting levels, 
will switch to point 6, otherwise will implement point 
5. 

5. Will do increase the hybrid graph size by one step and 

again will find the controls njjTu ,...,1,0)},({  . Will 

continue the process, until the all controls will be 
located within the required extents. 

6. Based on hybrid graph we do define the system state 
variables values in terms of sampling moments

TgnTTt 1,...,2,  . 

7. Expressing each control signal  jTu  through the 

state coordinates values      jTxjTxjTx n,...,, 21 , 

we do compose set of equations (32), based on that 

solution will find the inverse matrix elements  . 

8. Let’s construct the synthesized system diagram (Figure 
8). 
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Fig. 8. Synthesized digital system diagram  

 
V. GRAPHICAL EXAMPLE 

 

In Figure 9a was demonstrated the input signal cycle 
frequency of interruption system diagram. Such process 
is characterized by transfer function as below  

 

)2)(1(

1
)(




ppp
pA . 

 

The interrupter Sv makes sample capture from the 
signal at the instants of time 

,...)4/1(,,...,4,0 TjjTTTt   . Switching time Т=1с, 
initial state vector ]1,01,01,0[)0( x . There has been 
imposed restrictions to control actions 1u . It is 
required to find the minimum number of steps, that are 

required for process relocation from preset initial state 
to balanced conditions, and define the optimal control 
sequence )}({ jTu  and optimum control law. 
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Fig. 9. State variables diagram, SVG and HGM systems  
 

The computing chain as follows. 
1. Do construction of state variables graph the 

presented continuous part (Figure 9b). Based on that 
will find the weighting functions and its derivatives: 
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2. Considering pulse elements operating mode will do 
sample capture of weighting functions coefficients. 

3. Do construction of hybrid graph model as three un-
jointed sub-graphs for the moment t=5Т/4 (Figures 
9c, 9d). Will find the state variables 



Complex Discrete Systems Graph Simulation 

272 

 

).()5,0()4(471,0

)0(053,0)0(182,0)45(

);(024,0)4(176,0

)0(055,0)0(2,0)0(287,0)45(

);(0025,0)4(082,0)0(057,0

)0(255,0)0(713,0)0()45(

33

322

3211























TuTu

uxTx

TuTu

uxxTx

TuTuu

xxxTx

 

 

4. The minimum number of steps in linear system shall 
be defined by object degree of a differential 
equation. For system concerned it’s equal three.  

 
      0454545 321  TxTxTx . 

 

Based on obtained in point 3 equations will define 
the sequence )}({ jTu  

 

}71,0;328,1;45,5{)}({ jTu . 

 

5. Since the equation )0( u exeeds the limiting level  
1max u , we switch to next step.  

We compose the equations for the moment t=2T. 
Constitutive equations for this instant considering  
the maximum response speed terms   02 Tx  and 
initial conditions appear as:  
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Based on that will find the following controls 
sequence: 

 

    26,0;139,4;45,1;1 jTu . 

 

Being that again in this sequence is the control, 
exceeding the limiting level, We increase the 
transient time one step more. Will find the state 
variables )49();49();49( 321 TxTxTx . 
Assuming 0)49( Tx  and considering, that 

]1,01,01,0[)0( x , will obtain 
 

}279,0;2273,0;1;692,0;1{)}({ jTu . 

 

Controls computation thereon could be completed, 
since the all controls at sequence )}({ jTu  are 

within the limiting level, and consider, that process 
from initial state  0x  to balanced state could be 
transferred within the minimum number of steps 
equal 5. 

6. According to weighting functions and equations 
found 2,45,1,41,0)};({  jjTu  will find the 
state coordinates values at sampling moments.  
Express the controls  2,45,41)};({  jjTu  
through the state variables values

)(),(),( 321 jTxjTxjTx , will obtain the equations 
system: 
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7. Substitute the controls values and state variables, 
will find the inverse matrix elements: 

  

}97,4;397,2;778,5{ B . 

 

8. Do construct the synthesized digital system diagram 
(Figure 10). 
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Fig. 10. Synthesized system diagram  
 

VI. CONCLUSION 
 

Thus, we demonstrated, how with the aid of dynamic 
graph models could be constructed the diverse discrete 
systems models. Suggested graph models allow to 
cover such systems classes, like nonlinear with pulse-
duration modulation, systems with the cycling 
interruption rate, with the finite quantization time, 
nonlinear continuous parts systems, linear and 
nonlinear multidimensional systems. Such give a 
chance to obtain an attractive in terms of calculating, 
formulas to calculate transients for all under the 
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measurement coordinates; to do research of all 
mentioned classes and systems in terms of stability; to 
determine its controlled and observable coordinates. 

The developed models and algorithms significantly 
simplify the analysis and synthesis complex discrete 
systems tasks solution, since according to graph models 
there is a chance to write out the equations required at 
one, with no extra operations, are associated in state 
variables method with the necessity for repeated 
multiplying out and matrixes inversion. 
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