• Title/Summary/Keyword: JKR model

Search Result 13, Processing Time 0.04 seconds

Characterization of Elastic Modulus and Work of Adhesion in Elastomeric Polymer through Micro Instrumented Indentation Technique (마이크로 압입시험기법의 응용을 통한 탄성체 고분자 소재의 역학적 특성화 및 계면 접합에너지 평가기법 연구)

  • Lee, Gyu-Jei;Kang, Seung-Kyun;Kang, In-Geun;Kwon, Dong-Il
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1744-1748
    • /
    • 2007
  • In this study, the Johnson-Kendall-Roberts (JKR) theory was combined with the instrumented indentation technique (IIT) to evaluate work of adhesion and modulus of elastomeric polymer. Indentation test was used to obtain the load-displacement data for contacts between Tungsten Carbide indenter and elastomeric polymer. And the JKR contact model, contrived to take viscoelastic effects of polymer into account, was applied to compensate the contact area and the elastic modulus which Hertzian contact model would underestimate and overestimate, respectively. Besides, we could obtain the thermodynamic work of adhesion by considering the surface energy in this contact model. In order to define the relation between JKR contact area and applied load without optical measuring of contact area, we used the relation between applied load and contact stiffness by examining the correlation between JKR contact area and stiffness through dimensional analysis with 14 kinds of elastomeric polymer. From this work, it could be demonstrated that the interfacial work of adhesion and elastic modulus of compliant polymer can be obtained from a simple instrumented indentation testing without area measurement, and provided as the main algorithm of compliant polymer characterization.

  • PDF

Mechanical Characterization of Elastomeric Polymer Through Micro Instrumented Indentation Technique (마이크로 압입시험기법의 응용을 통한 탄성체 고분자 소재의 역학적 특성화 및 계면 접합에너지 평가기법 연구)

  • Lee, Gyu-Jei;Kang, Seung-Kyun;Kang, In-Geun;Kwon, Dong-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.9
    • /
    • pp.951-959
    • /
    • 2007
  • In this study, the Johnson-Kendall-Roberts(JKR) theory was combined with the instrumented indentation technique (IIT) to evaluate work of adhesion and modulus of elastomeric polymer. Indentation test was used to obtain the load-displacement data for contacts between Tungsten Carbide indenter and elastomeric polymer. And the JKR contact model, contrived to take viscoelastic effects of polymer into account, was applied to compensate the contact area and the elastic modulus which Hertzian contact model would underestimate and overestimate, respectively. Besides, we could obtain the thermodynamic work of adhesion by considering the surface energy in this contact model. In order to define the relation between JKR contact area and applied load without optical measuring of contact area, we used the relation between applied load and contact stiffness by examining the correlation between JKR contact area and stiffness through dimensional analysis with 14 kinds of elastomeric polymer. From this work, it could be demonstrated that the interfacial work of adhesion and elastic modulus of compliant polymer can be obtained from a simple instrumented indentation testing without area measurement, and provided as the main algorithm of compliant polymer characterization.

Nonlinear Dynamics of AFM Tip with Different Contact Models (접촉모델에 따른 AFM 팀의 배선형 동역학 비교)

  • 홍상혁;이수일;이장무
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.73-76
    • /
    • 2004
  • Tapping mode atomic force microscopy (TM-AFM) utilizes the dynamic response of a resonating probe tip as it approaches and retracts from a sample to measure the topography and material properties of a nanostructure. We present recent results based on numerical techniques that yield new perspectives and insight into AFM. It is compared that the dynamic models including van der Waals and Derjaguin-Muller-Toporov(DMT) or Johnson-Kendall-Roberts(JKR) contact forces demonstrates that periodic solutions can be represented with respect to the approach distance and excitation frequency.

  • PDF

An Analysis of Detachment Mechanism of Gecko Adhesion System using Finite Element Method (유한요소법을 이용한 게코 접착 시스템의 분리 메커니즘에 대한 해석)

  • Kim, Won-Bae;Cho, Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.550-553
    • /
    • 2010
  • 본 논문에서는 seta와 spatula로 구성된 게코(gecko) 접착 시스템의 해석을 위한 새로운 adhesive beam contact model을 제시한다. adhesive contact 해석에 있어서 기존의 JKR model은 nano pillar와 같은 형태의 접촉방식의 해석에는 매우 유용하지만, seta와 같이 보(beam)의 형상을 가지는 구조물의 접촉방식의 해석에는 부적합하다. 따라서 본 연구에서는 seta와 같은 보의 형상을 가지는 접촉 시스템의 해석을 위해 adhesive beam contact model을 제시하고, 유한요소 해석을 통하여 접촉면에서의 불균일한 응력분포 상태가 분리 메커니즘에 미치는 영향에 대한 해석 결과를 제시한다. 또한 spatula의 기하학적 형상과 보의 접촉각(contact angle)등이 seta adhesion system의 분리 메커니즘(detachment mechanism)에 미치는 영향에 대한 결과를 제시한다.

  • PDF

Analysis of Particle Packing Process by Contact Model in Discrete Element Method (입자 패킹 공정에 대한 접촉모델별 이산요소법 해석)

  • Lyu, Jaehee;Park, Junyoung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.3
    • /
    • pp.59-65
    • /
    • 2019
  • In many industries, particle packing is adopted quite frequently. In the particle packing process, the Discrete Element Method (DEM) can analyze the multi-collision of particles efficiently. Two types of contact models are frequently used for the DEM. One is the linear spring model, which has the fastest calculation time, and the other is the Hertz-Mindlin model, which is the most frequently used contact model employing the DEM. Meanwhile, very tiny particles in the micrometer order are used in modern industries. In the micro length order, surface force is important to decreased particle size. To consider the effect of surface force in this study, we performed a simulation with the Hertz-Mindlin model and added the Johnson-Kendall-Roberts (JKR) theory depicting surface force with surface energy. In addition, three contact models were compared with several parameters. As a result, it was found that the JKR model has larger residual stress than the general contact models because of the pull-off force. We also validated that surface force can influence particle behavior if the particles are small.

A Study of Adhesive Mechanism of Gecko Adhesion System using Adhesive Beam Contact Model (보 접착 모델을 이용한 게코 접착 시스템의 접착 메커니즘에 대한 연구)

  • Kim, Won-Bae;Cho, Maeng-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.4
    • /
    • pp.403-407
    • /
    • 2010
  • Gecko adhesion system consists of beam-shaped seta and spatula which has the role of adhesive pad. In this paper, adhesion mechanism of gecko adhesion system is performed by using adhesive beam contact model. this model has a feature of non-uniform stress profile on the contact surface and adhesion/detachment mechanism is determined by the tensile stress of the contact region. a spatula tip pad has the role of reduction of maximum tensile stress and adhesive force is increased due to this effect. As for a reverse loading case, maximum compressive stress drops by the spatula effect and this cause unsymmetric loading conditions between adhesion and detachment forces. In this study, finite element method is used for the analysis of adhesive beam contact model and the results for spatula effect are presented.

A Study of Minute Particles' Adhesion on a Rough Surface for a Cryogenic $CO_2$ Cleaning Process (극저온 $CO_2$ 세정공정을 위한 거친표면 위 미세입자의 점착특성 연구)

  • Seok, Jong-Won;Lee, Seong-Hoon;Kim, Pil-Kee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.1
    • /
    • pp.5-10
    • /
    • 2010
  • Among a variety of cleaning processes, the cryogenic carbon dioxide ($CO_2$) cleaning has merits because it is highly efficient in removing very fine particles, innoxious to humans and does not produce residuals after the cleaning, which enables us to extend its area of coverage in the semi-conductor fabrication society. However, the cryogenic carbon dioxide cleaning method has some technical research issues in aspect to particles' adhesion and removal. To resolve these issues, performing an analysis for the identification of particle adhesion mechanism is needed. In this study, a research was performed by a theoretical approach. To this end, we extended the G-T (Greenwood-Tripp) model by applying the JKR (Johnson-Kendall-Roberts) and Lennard-Jones potential theories and the statistical characteristics of rough surface to investigate and identify the contact, adhesion and deformation mechanisms of soft or hard particles on the rough substrate. The statistical characteristics of the rough surface were taken into account through the employment of the normal probability distribution function of the asperity peaks on the substrate surface. The effects of surface roughness on the pull-off force for these particles were examined and discussed.

The History of the Auto Industry in South Korea based on Double Helix Model

  • Eungoo KANG
    • Journal of Koreanology Reviews
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • The South Korean automotive industry has been the major producer for both domestic and international market. This rises of the South Korean automotive industry has resulted in combination various factors ranging from government policies and the foreign investment. The Double Helix model provides a comprehensive and useful framework to understand how these factors have interacted to shape the history of the auto industry of South Korea. This research aims to provide the history of the Auto Industry in Korea based on the Double Helix Model. To collect textual literature dataset, the present author tried to screen and select adequate prior studies in the past and current literature to achieve the purpose of the study. According to the literature analysis, the history of the automotive industry in South Korea is an interesting case in the successful implementation of the Double Helix model. The model emphasizes the collaboration between the government and the private sector in achieving common goals. This research founded the four historical events of the development of the South Korean automotive industry based on the Double Helix Models. In sum, the research concludes that the Double Helix Model is an essential tool for understanding the historical development of the auto industry in South Korea.

Vibro-Contact Analysis of AFM Tip on Polymer Surface (폴리머 표면측정을 위한 AFM 팁의 접촉-진동 해석)

  • Hong, Sang-Hyuk;Lee, Soo-Il
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.538-541
    • /
    • 2005
  • In tapping mode atomic force microscopy(TM-AFM). the vibro-contact response of a resonating tip is used to measure the nanoscale topology and other properties of a sample surface. However, the nonlinear tip-surface interact ions can affect the tip response and destabilize the tapping mode control. Especially it is difficult to obtain a good scanned image of high adhesion surfaces such as polymers and biomoleculars using conventional tapping mode control. In this study, theoretical and experimental investigations are made on the nonlinear dynamics and control of TM-AFM. To analyze the complex dynamics and control of the tapping tip, the classical contact models are adopted due to the surface adhesion. Also we report the surface adhesion is an additional important parameter to determine the control stability of TM-AFM. In addition, we prove that it is more adequate to use Johnson-Kendall-Roberts (JKR) contact model to obtain a reasonable tapping response in AFM for the soft and high adhesion samples.

  • PDF

A study on the Nano adhesion and Friction at Different Contact Conditions using SPM (SPM을 이용한 접촉조건 변화에 따른 미소응착 및 마찰특성에 관한 연구)

  • 윤의성;박지현;양승호;공호성
    • Tribology and Lubricants
    • /
    • v.17 no.3
    • /
    • pp.191-197
    • /
    • 2001
  • Nano adhesion and friction characteristics between SPM(scanning electron microscope) tips and flat plates of different materials were experimentally studied. Tests were performed to measure adhesion and friction in AFM(atomic force microscope) and LFM(lateral force microscope) modes in different conditions of relative humidity. Three different Si$_3$N$_4$ tips (rdaii : 15nm, 22nm and 50 nm) and three different flat plates of Si-wafer(100), W-DLC(tungsten-incorporated diamond-like carbon) and DLC were used. Results generally showed that adhesion and friction increased with the tip radius, and W-DLC and DLC surfaces were superior to Si-wafer. But the adhesion force of Si-wafer showed non linearity with the tip radius while W-DLC and DLC surfaces showed good correlation to the “JKR model”. It was found that high adhesion force between Si-wafer and a large radius of tip was caused by a capillary action due to the condensed water.