• Title/Summary/Keyword: JERK UP

Search Result 9, Processing Time 0.025 seconds

Drive-train Jerk Reduction Control for Parallel Hybrid Electric Vehicles (병렬형 하이브리드 전기자동차 구동계의 Jerk 저감 제어)

  • Park, Joon-Young;Sim, Hyun-Sung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.17-24
    • /
    • 2011
  • TMED(Transmission Mounted Electric Device) parallel hybrid configuration can realize EV(Electric Vehicle) mode by disengaging the clutch between an engine and a transmission-mounted motor to improve efficiencies of low load driving and regenerative braking. In the EV mode, however, jerk can be induced since there are insufficient damping elements in the drive-train. Though the jerk gives demoralizing influence upon driving comport, adding a physical damper is not applicable due to constraints of the layout. This study suggests the jerk reduction control, composed of active damping method and torque profiling method, to suppress the jerk without hardware modification. The former method creates a virtual damper by generating absorbing torque in the opposite direction of the oscillation. The latter method reduces impulse on the mated gear teeth of the drive-train by limiting the gradient of traction torque when the direction of the torque is reversed. To validate the effectiveness of the suggested strategy, a series of vehicle tests are carried out and it is observed that the amplitude of the oscillation can be reduced by up to 83%.

A Study on the Start-Up Scheme of Direct Vector Controlled Induction Motor System (유도전동기의 직접 벡터제어 시스템에서 기동기법에 관한 연구)

  • 전태원;최명규;유우종
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.5
    • /
    • pp.427-434
    • /
    • 2000
  • The paper proposes a zero speed start-up scheme of direct rector controlled induction motor drive without any torque jerk. At standstill condition, a method is derived to calculate a stator flux with only stator current. The programmable 3-stage low pass filters with programmable time constants is used in order to solute the problem of integration for stator flux estimation in the direct vector control mode. Due to the time delay of 3-stage low pass filter, the status flux decreases rapidly and also the torque jerk occurs during the transition from standstill mode to the direct rector control mode. A feedforward control strategy of the stator flux is suggested to prevent the torque jerk at start-up. Through results of simulation and experiment with 32 bit DSP, the performance of the start-up scheme is verified.

  • PDF

The Differences of the Normalized Jerk According to Shoes, Velocity and Slope During Walking (보행시 신발, 속도, 그리고 경사도에 따른 정규 저크의 차이)

  • Han, Young-Min;Choi, Jin-Seung;Kim, Hyung-Sik;Lim, Young-Tae;Yi, Jeong-Han;Tack, Gye-Rae;Yi, Kyung-Ok;Park, Seung-Bum
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.2
    • /
    • pp.1-8
    • /
    • 2006
  • The purpose of this study was to evaluate normalized jerk according to shoes, slope, and velocity during walking. Eleven different test subjects used three different types of shoes (running shoes, mountain climbing boots, and elevated forefoot walking shoes) at various walking speeds(1.19, 1.25, 1.33, 1.56, 1.78, 1.9, 2, 2.11, 2.33m/sec) and gradients(0, 3, 6, 10 degrees) on a treadmill. Since there were concerns about using the elevated forefoot shoes on an incline, these shoes were not used on a gradient. Motion Analysis (Motion Analysis Corp. Santa Rosa, CA USA) was conducted with four Falcon high speed digital motion capture cameras. Utilizing the maximum smoothness theory, it was hypothesized that there would be differences in jerk according to shoe type, velocity, and slope. Furthermore, it was assumed that running shoes would have the lowest values for normalized jerk because subjects were most accustomed to wearing these shoes. The results demonstrated that elevated forefoot walking shoes had lowest value for normalized jerk at heel. In contrast, elevated forefoot walking shoes had greater normalized jerk at the center of mass at most walking speeds. For most gradients and walking speeds, hiking boots had smaller medio-lateral directional normalized jerk at ankle than running shoes. These results alluded to an inverse ratio for jerk at the heel and at the COM for all types of shoes. Furthermore, as velocity increased, medio-lateral jerk was reduced for all gradients in both hiking boots and running shoes. Due to the fragility of the ankle joint, elevated forefoot walking shoes could be recommended for walking on flat surfaces because they minimize instability at the heel. Although the elevated forefoot walking shoes have the highest levels of jerk at the COM, the structure of the pelvis and spine allows for greater compensatory movement than the ankle. This movement at the COM might even have a beneficial effect of activating the muscles in the back and abdomen more than other shoes. On inclines hiking boots would be recommended over running shoes because hiking boots demonstrated more medio-lateral stability on a gradient than running shoes. These results also demonstrate the usefulness of normalized jerk theory in analyzing the relationship between the body and shoes, walking velocity, and movement up a slope.

Kinematic Analysis of Jerk Motion during Successful and Failed Trials of a Male Weight lifter -Case Study of an Olympic Gold Medalist- (역도 용상 Jerk기술동작의 성공.실패에 대한 운동학적 분석 -사례연구-)

  • Park, Tae-Min;Ryu, Ji-Seon;Yoon, Suk-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.4
    • /
    • pp.739-748
    • /
    • 2009
  • The purpose of this study was to compare successful and failed trials of the dean and jerk exercise performed by an 2008 Beijing Olympic gold medalist. One successful and one failed trial of an Olympic gold medalist (2008 Beijing Olympic 77 kg event) were investigated for this study. A three-dimensional motion analysis was performed, using three digital camcorders (SF: 6Hz). The events were recorded during the 89th Korean National Athletic Games. After analyzing the jerk motion, the following results were found. The successful trial revealed a shorter performance time at Phase 1 and a longer one at Phase 3 and Phase 4 as compared to the failed trial. The vertical displacement of the knee in failed trial was lower than that m the successful one. The differences in the vertical velocity of barbell and knee between the trials were seen at Phase 3 and Phase 4. A faster COM inferior velocity was seen in the successful trial at Phase 3. A more flexed knee angle was seen in the failed trial as compared to the successful trial at E3.

Does the Control of Breathing Help a Dancer to Perform a Smoother Ballet Pour de Bra? (호흡이 Ballet Pour de Bra 동작의 부드러움에 주는 영향)

  • Chung, Kui-In;Nam, Ki-Jeong
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.185-190
    • /
    • 2007
  • The purpose of this study was to investigate the effects that breathing, thoracic and abdominal, had on the smoothness while performing ballet pour de bra. Five skilled ballet dancers(age: $24{\pm}1$, height: $163.4{\pm}2.88$, weight: $44.4{\pm}1.34$) with experience of over 10 years participated in this study. Each participant performed the ballet movement three times with abdominal respiration and with thoracic respiration. The kinematic data was recorded at 60 Hz with three digital cameras (Sony VX-2100). The pour de bra movement consists of two phases, up and down. The up phase is defined as the movement from the en bas through the en avant to the en haut. The down phase is defined as the movement from the en haut through the $\grave{a}$ la seconde to the en bas. During these two phases the Jerk Cost (JC) factor was calculated for the shoulder, elbow and wrist to quantify the smoothness. The group who performed the movement while abdominal respiration had a lower JC factor and so it was concluded that while abdominal respiration the smoothness of the movement was increased as opposed to the thoracic respiration.

A Study on Ride Quality Due to Deterioration Effects for the Coupler Types of Urban EMUs (도시철도차량의 연결기 종류별 노후화가 승차감에 미치는 영향 연구)

  • Kim, Jun Woo;Cho, Byung Jin;Han, Eun Kwang;Koo, Jeong Seo
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.3
    • /
    • pp.117-122
    • /
    • 2017
  • In this study, we studied the ride quality considering the deterioration effects of the three type couplers (single, double, and ring types) for EMUs. In order to know the impact occurred when an urban transit vehicle is under breaking, we tested the conditions of the service brake and the emergency brake. Normal coupler models without any slack showed similar dynamic performance results under all breaking conditions. But if the couplers become old, the initial pre-stresses are removed because of permanent compressive deformation in rubber. For three types of the old coupler models without the initial pre-stress, we evaluated dynamic performances of each type. As the results, the maximum and average acceleration levels of the double type and the ring type were similarly low in all conditions. But the accelerations of the single type coupler was high when compared to those of the double and ring types. In addition, Jerk value of the single type model associated with ride quality was high up to 15 times to the ring type in condition of the service braking in empty vehicle weight. Jerk value of the double type model was high up to 6 times to the ring type.

A Study on TPS based on ATO for Driverless LRT (ATO 자동운전 기반의 무인운전 경전철 TPS에 관한 연구)

  • Lee, Chang-Hyung;Lee, Jong-Woo
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1132-1137
    • /
    • 2008
  • Automatic Operation based on ATO (Automatic Train Operation) is necessary for driverless Light Rail Transit business. When this kind of driverless LRT operation plan is made, TPS (Train Performance Simulation) is traditionally simulated at all-out mode and coasting mode based on manual operation. Commercial schedule speed equals to all-out speed minus $9{\sim}15%$ make-up margin. Coasting mode TPS simulation is also run at commercial schedule speed to calculate run time and energy consumption. But TPS based on manual operation should make an improvement on accuracy in case of driverless LRT operation Plan. In this paper, new fast mode TPS simulation using ATO pattern is proposed and show near actual ATO result. The actual ATO pattern can be accurately simulated with the introduction of 4 parameters such as commercial braking rate, jerk, station stop profile and grade converted distance. Normal mode TPS simulation for commercial schedule speed can be designed to have fast mode trip time plus 3 seconds/km margin recommended by korean standard LRT specification.

  • PDF

A Computerized Analysis of Kinetic Posture and Muscle Contraction during a Weight Lifting Motion (역도경기(力道競技)의 운동학적(運動學的) 자세(姿勢)와 근수축(筋收縮) 수준(水準)에 관(關)한 전산분석(電算分析))

  • Lee, Myeon-U;Jang, Won-Gyeong;Seong, Deok-Hyeon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.9 no.2
    • /
    • pp.9-25
    • /
    • 1983
  • The purpose of this study was to film up computerized analyses for both kinematic posture(film analysis) and muscle dynamics (EMG) during a weight-lifting motion. (Snatch, Clean and Jerk) Using a motor drive camera (3.5 frames/sec) and a Location Analyzer, motion tracks of 13 landmarks, which were attached to the major joints, during the motion were converted into digital values. At the same time, EMG amplitudes from 11 major muscle groups were recorded. Recorded data were processed via analog/hybrid computer (ADAC 480) and digital computer (PDP 11/44). Landmark locations and EMG amplitude were integrated by a computerized routine. Computer output included graphic reproductions on sepuential dislocations of body segments, center of gravity of body segments and the associated changes on EMG amplitude such as % EMG's of major muscle group during a weight lifting motion. The results strongly suggest that the computerized motion-EMG integration can provide a further working knowledge in selection and in training of workers and athletes. Suggestions for a further study include additional device for velocity measurement, expansion of the link model for biomechanical analysis and other implementations necessary for athletic application.

  • PDF

Initial Fixation Power of Human Bone Interference Screw (인간 골 간섭 나사못의 초기 고정력)

  • Kim Jung-Man;Chung Yang-Kook;Kim Yang-Soo;Oh In-Soo;Koh Ihn-Joon
    • Journal of Korean Orthopaedic Sports Medicine
    • /
    • v.1 no.1
    • /
    • pp.26-30
    • /
    • 2002
  • Purpose: To estimate the initial and early phase fixation power of the human bone interference screw in reconstruction of the anterior cruciate ligament with bone-patellar tendon-bone allograft. Materials and Methods: The results of twenty eight knees of reconstruction with bone-patellar tendon-bone allograft were analysed in 6 weeks, 12 weeks, 6 months and one year following operation. Physical examination including Lachman test, flexion rotation drawer test and jerk test were performed. The KT-1000 measurement was performed at the same time. In Lachman test 0 $\~$2mm anterior displacement of the tibia was considered normal. The KT-1000 measurement of normal side was compared with operation side and the difference of the two was recorded. The MRI was checked at final follow-up. Results: All but one knee showed normal in physical examination. The failed case showed proximal migration of the graft due to insufficient number of interference screw fixation in widened tibial tunnel. Conclusions: The human cortical bone interference screw showed sufficient initial and early phase fixation power in reconstruction of the anterior cruciate ligament.

  • PDF